Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 297 papers

Incretin-like effects of small molecule trace amine-associated receptor 1 agonists.

  • Susanne Raab‎ et al.
  • Molecular metabolism‎
  • 2016‎

Type 2 diabetes and obesity are emerging pandemics in the 21st century creating worldwide urgency for the development of novel and safe therapies. We investigated trace amine-associated receptor 1 (TAAR1) as a novel target contributing to the control of glucose homeostasis and body weight.


Massive Shift in Gene Expression during Transitions between Developmental Stages of the Gall Midge, Mayetiola Destructor.

  • Ming-Shun Chen‎ et al.
  • PloS one‎
  • 2016‎

Mayetiola destructor is a destructive pest of wheat and has six developmental stages. Molecular mechanisms controlling the transition between developmental stages remain unknown. Here we analyzed genes that were expressed differentially between two successive developmental stages, including larvae at 1, 3, 5, and 7 days, pupae, and adults. A total of 17,344 genes were expressed during one or more of these studied stages. Among the expressed genes, 38-68% were differently expressed between two successive stages, with roughly equal percentages of up- and down-regulated genes. Analysis of the functions of the differentially expressed genes revealed that each developmental stage had some unique types of expressed genes that are characteristic of the physiology at that stage. This is the first genome-wide analysis of genes differentially expressed in different stages in a gall midge. The large dataset of up- and down-regulated genes in each stage of the insect shall be very useful for future research to elucidate mechanisms regulating insect development and other biological processes.


Emerging of two new subgenotypes of porcine reproductive and respiratory syndrome viruses in Southeast China.

  • Qiaoya Zhang‎ et al.
  • Microbial pathogenesis‎
  • 2016‎

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the leading swine pathogens and causes major economic loss to the global swine industry. In this study, a total of 49 PRRSV isolates were collected from different swine herds in seven provinces in Southeast China from 2014 to 2015. All the ORF5 genes and some Nsp2 genes were sequenced. Phylogenetic analysis showed that all the isolates belonged to the North America genotype. Among them, five isolates formed a new subgenotype IV derived from highly pathogenic PRRSV (HP-PRRSV). Six isolates formed subgenotype III, which were closely related to the NADC30 strain in the US. These isolates formed 13 putative N-linked glycosylation site (NGS) patterns based on N30, 33, 34, 35, 44 and 51. There were fewer NGSs of isolates in subgenotype IV than in subgenotype III. This indicates that the two new subgenotypes of PRRSV strains with different NGS patterns were spreading in those regions of China. The genetic diversity should be considered for the control and prevention of this disease.


Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication.

  • Jianyu Fang‎ et al.
  • PloS one‎
  • 2016‎

Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA (cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13-16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection.


Retinoic acid promotes the endogenous repair of lung stem/progenitor cells in combined with simvastatin after acute lung injury: a stereological analysis.

  • Ce Yang‎ et al.
  • Respiratory research‎
  • 2015‎

The treatment of acute respiratory distress syndrome (ARDS), most commonly seen during the organ dysfunction remains unsatisfied. Presently, the stem/progenitor cell-based endogenous repair has been aroused attention enormously. This report investigated the effects of retinoic acid (RA) plus simvastatin (SS) with respect to dynamics of lung repair cells as well as to elucidate the underlying mechanism.


Investigation of association between IL-8 serum levels and IL8 polymorphisms in Chinese patients with sepsis.

  • Donghai Hu‎ et al.
  • Gene‎
  • 2016‎

To assess the clinical relevance of IL8 gene polymorphisms in patients with sepsis and its association with systemic IL-8 levels.


Transcription analysis on response of porcine alveolar macrophages to co-infection of the highly pathogenic porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae.

  • Bin Li‎ et al.
  • Virus research‎
  • 2015‎

Porcine respiratory disease complex (PRDC) is of great concern economically, for swine producers worldwide. Co-infections with porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (Mhp) are considered the major causative agents of PRDC, and responsible for mass mortality in pigs. Nevertheless, the molecular mechanisms underlying the host factors involved in pathogenesis and persistent infection have not been clearly established because of a lack of information regarding host responses following co-infection. In the current study, high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages (PAM) to co-infection with highly pathogenic PRRSV (HP-PRRSV) and Mhp. A total of 2152 and 1760 genes were identified as being differentially expressed between the control group and PRRSV+Mhp co-infected group at 6 and 15 h post infection, respectively. The DE genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, defense response, signal transduction. The pathway analysis demonstrated that the most significant pathways were associated with chemokine signaling pathway, cytokine, TLR, RLR and NLR signaling pathways and Jak-STAT signaling pathway. STRING analysis demonstrated that IL-1β is an integral gene in co-infections with PRRSV and Mhp. The present study is the first to document the response of PAMs to co-infection with HP-PRRSV and Mhp. The observed gene expression profile could help with the screening of potential host agents for reducing the prevalence of co-infections, and to further develop our understanding of the molecular pathogenesis associated with PRRSV and Mhp co-infection in pigs.


The persistent circulation of enterovirus 71 in People's Republic of China: causing emerging nationwide epidemics since 2008.

  • Xiaojuan Tan‎ et al.
  • PloS one‎
  • 2011‎

Emerging epidemics of hand-foot-and-mouth disease (HFMD) associated with enterovirus 71 (EV71) has become a serious concern in mainland China. It caused 126 and 353 fatalities in 2008 and 2009, respectively. The epidemiologic and pathogenic data of the outbreak collected from national laboratory network and notifiable disease surveillance system. To understand the virological evolution of this emerging outbreak, 326 VP1 gene sequences of EV71 detected in China from 1987 to 2009 were collected for genetic analyses. Evidence from both traditional and molecular epidemiology confirmed that the recent HFMD outbreak was an emerging one caused by EV71 of subgenotype C4. This emerging HFMD outbreak is associated with EV71 of subgenotype C4, circulating persistently in mainland China since 1998, but not attributed to the importation of new genotype. Originating from 1992, subgenotype C4 has been the predominant genotype since 1998 in mainland China, with an evolutionary rate of 4.6∼4.8×10⁻³ nucleotide substitutions/site/year. The phylogenetic analysis revealed that the majority of the virus during this epidemic was the most recent descendant of subgenotype C4 (clade C4a). It suggests that the evolution might be one of the potential reasons for this native virus to cause the emerging outbreak in China. However, strong negative selective pressure on VP1 protein of EV71 suggested that immune escape might not be the evolving strategy of EV71, predicting a light future for vaccine development. Nonetheless, long-term antigenic and genetic surveillance is still necessary for further understanding.


Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass.

  • Daria Esterházy‎ et al.
  • Cell metabolism‎
  • 2011‎

Decreased β cell mass and function are hallmarks of type 2 diabetes. Here we identified, through a siRNA screen, beta site amyloid precursor protein cleaving enzyme 2 (Bace2) as the sheddase of the proproliferative plasma membrane protein Tmem27 in murine and human β cells. Mice with functionally inactive Bace2 and insulin-resistant mice treated with a newly identified Bace2 inhibitor both display augmented β cell mass and improved control of glucose homeostasis due to increased insulin levels. These results implicate Bace2 in the control of β cell maintenance and provide a rational strategy to inhibit this protease for the expansion of functional pancreatic β cell mass.


Tang-Nai-Kang alleviates pre-diabetes and metabolic disorders and induces a gene expression switch toward fatty acid oxidation in SHR.Cg-Leprcp/NDmcr rats.

  • Linyi Li‎ et al.
  • PloS one‎
  • 2015‎

Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat oxidation through the activation of SIRT1 and AMPK signaling.


miR‑542‑3p overexpression is associated with enhanced osteosarcoma cell proliferation and migration ability by targeting Van Gogh‑like 2.

  • Huazhuang Li‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Osteosarcoma is the most common histological form of primary bone cancer, which arises from osteoid tissue. It occurs predominantly in infants and adolescents, with an incidence of 4‑5 cases/100,000,000. The 5-year survival rate of patients with osteosarcoma has significantly improved over time; however, there remains a significant proportion of patients that respond poorly to chemotherapy. An improved understanding of the pathology of osteosarcoma is required to provide more effective treatment strategies, identify biomarkers and develop novel chemotherapeutic agents. Disturbance in microRNA (miRNA) expression has been identified in osteosarcoma tissues and cell lines; however, the roles of miRNA during osteosarcoma pathogenesis remain to be elucidated. In the present study, the expression levels of eight selected miRNAs were investigated in osteosarcoma tissues and the results revealed that the expression levels of miR‑542‑3p and miR‑542‑5p were significantly upregulated and the expression of miR‑199‑3p was significantly downregulated. Using a dual luciferase assay and western blot analysis, the present study confirmed that Van Gogh‑like 2, which is a non‑canonical Wnt pathway suppressor, was a target gene of miR‑542‑3p. Subsequently, the biological function of miR‑542‑3p in U2OS cells was examined, which revealed that overexpression of miR‑542‑3p can enhance the cell proliferation and migration ability of U2OS cells. This indicated that miR‑542‑3p may act as an oncogene in osteosarcoma pathogenesis. The findings of the present study may provide assistance in understanding the development of osteosarcoma and aid in the development of strategies for the diagnosis and treatment of osteosarcoma.


The association of polymorphisms of TLR4 and CD14 genes with susceptibility to sepsis in a Chinese population.

  • Haiyan Wang‎ et al.
  • BMC medical genetics‎
  • 2014‎

Sepsis is now the leading cause of death in the non-cardiovascular intensive care unit (ICU). Recent research suggests that sepsis is likely to be due to an interaction between genetic and environmental factors. Genetic mutations of toll-like receptor 4 (TLR4) and cluster of differentiation 14 (CD14) genes are involved in the immune and (or) inflammatory response. These may contribute to the susceptibility to sepsis in patients. This study was designed to evaluate whether the TLR4 and cluster CD14 gene polymorphisms are associated with susceptibility to sepsis.


MicroRNA-214 suppresses oncogenesis and exerts impact on prognosis by targeting PDRG1 in bladder cancer.

  • Jinfeng Wang‎ et al.
  • PloS one‎
  • 2015‎

MicroRNA-214 (miR-214) has been reported to be dysregulated in human bladder cancer tissues. We aimed to investigate the clinical correlation, biological significance and molecular network of miR-214 in bladder cancer. Our results showed miR-214 was down-regulated in bladder cancer tissues and significantly associated with tumor stage, lymph node status, grade, multifocality, history of non-muscle-invasive bladder cancer (NMIBC). Moreover, miR-214 could serve as an independent factor of recurrence-free survival (RFS) and overall survival (OS) for patients with muscle-invasive bladder cancer (MIBC). Restoration of miR-214 expression in bladder cancer cell lines inhibited cell proliferation, migration, invasion and markedly promoted apoptosis. Dual-luciferase reporter assay recognized PDRG1 as direct downstream target gene of miR-214. PDRG1 was significantly increased in tumors low of miR-214 and knockdown of PDRG1 mimicked the effects of miR-214 overexpression. Our findings manifest that miR-214 could exert tumor-suppressive effects in bladder cancer by directly down-regulating oncogene PDRG1 and suggest an appealing novel indicator for prognostic and therapeutic intervention of bladder cancer.


Long non-coding RNA, CHRF, predicts poor prognosis of lung adenocarcinoma and promotes cell proliferation and migration.

  • Xiaowei Xie‎ et al.
  • Oncology letters‎
  • 2018‎

Research has demonstrated that long non-coding RNAs (lncRNAs) are crucial factors in carcinogenesis. LncRNA, cardiac hypertrophy-related factor (CHRF), has been demonstrated to act as an oncogene in a variety of types of tumor. However, its biological function in lung adenocarcinoma remains to be elucidated. The present study aimed to examine the level of CHRF expression in lung adenocarcinoma tissues and cell lines, and to analyze the association between CHRF and clinicopathological characteristics, as well prognosis of patients with lung adenocarcinoma. Loss-of-function assays were performed to determine the biological function of CHRF. The expression of CHRF was markedly upregulated in lung adenocarcinoma tissues and cell lines. Patients exhibiting upregulated CHRF also demonstrated advanced Tumor-Node-Metastasis stage, lymph node metastasis and larger tumor size compared with those exhibiting downregulated CHRF. Results of Cox proportional hazards regression analysis suggested that highly-expressed CHRF may be regarded as an independent prognostic factor of prognosis. In addition, loss-of-function assays indicated that downregulation of CHRF suppressed cell proliferation, migration and invasion, and induced cell cycle arrest and apoptosis. Western blotting revealed that the phosphoinositide-3-kinase/Akt signaling pathway activity is reduced in lung adenocarcinoma following the knockdown of CHRF. Together, these results indicate that lncRNA, CHRF, may serve a critical role in the development and progression of lung adenocarcinoma, and may act as a novel prognostic biomarker and therapeutic target in lung adenocarcinoma.


Functional analysis of a pathogenesis-related thaumatin-like protein gene TaLr35PR5 from wheat induced by leaf rust fungus.

  • Jiarui Zhang‎ et al.
  • BMC plant biology‎
  • 2018‎

Plants have evolved multifaceted defence mechanisms to resist pathogen infection. Production of the pathogenesis-related (PR) proteins in response to pathogen attack has been implicated in plant disease resistance specialized in systemic-acquired resistance (SAR). Our earlier studies have reported that a full length TaLr35PR5 gene, encoding a protein exhibiting amino acid and structural similarity to a sweet protein thaumatin, was isolated from wheat near-isogenic line TcLr35. The present study aims to understand the function of TaLr35PR5 gene in Lr35-mediated adult resistance to Puccinia triticina.


Effect of simvastatin on expression of VEGF and TGF-β1 in atherosclerotic animal model of type 2 diabetes mellitus.

  • Haiyan Wang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

Expression of vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) in atherosclerosis animal model of type 2 diabetes mellitus treated with simvastatin was investigated. Clean grade mature Sprague Dawley (SD) rats were divided into three groups: Normal control (n=10), model (n=13) and treatment group (n=13); low-dose simvastatin was administered. The changes of VEGF and TGF-β1 levels were analyzed by tail vein blood sampling. The relationship between levels of VEGF, TGF-β1 and treatment time was analyzed. The expression level of VEGF in the treatment group after 4 and 8 weeks of intervention was lower compared with the model group (P<0.05). The expression level of TGF-β1 in the treatment group after 8 weeks of intervention was higher than that in the model group (P<0.05). The expression level of VEGF in the treatment group after 8 weeks of intervention was lower than that after 1 week of intervention (P<0.05). The expression level of TGF-β1 was increased in the model group after 8 weeks of intervention compared with 1 week before and after the intervention (P<0.05). The expression level of TGF-β1 in the treatment group at 2, 4 and 8 weeks after intervention were significantly higher than that before intervention (P<0.05). The expression of TGF-β1 increased after 4 and 8 weeks after intervention compared with 1 week after intervention (P<0.05). The expression of VEGF was negatively correlated with TGF-β1 expression in the treatment group; negative correlation was found between VEGF and treatment time. There was a positive correlation between TGF-β1 and treatment time. VEGF and TGF-β1 may be involved in the development of type 2 diabetes (T2MD) atherosclerosis (AS). Simvastatin may play a therapeutic role in T2MD AS by downregulating VEGF and upregulating the expression of TGF-β1.


SbbR/SbbA, an Important ArpA/AfsA-Like System, Regulates Milbemycin Production in Streptomyces bingchenggensis.

  • Hairong He‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Milbemycins, a group of 16-membered macrolide antibiotics, are used widely as insecticides and anthelmintics. Previously, a limited understanding of the transcriptional regulation of milbemycin biosynthesis has hampered efforts to enhance antibiotic production by engineering of regulatory genes. Here, a novel ArpA/AfsA-type system, SbbR/SbbA (SBI_08928/SBI_08929), has been identified to be involved in regulating milbemycin biosynthesis in the industrial strain S. bingchenggensis BC04. Inactivation of sbbR in BC04 resulted in markedly decreased production of milbemycin, while deletion of sbbA enhanced milbemycin production. Electrophoresis mobility shift assays (EMSAs) and DNase I footprinting studies showed that SbbR has a specific DNA-binding activity for the promoters of milR (the cluster-situated activator gene for milbemycin production) and the bidirectionally organized genes sbbR and sbbA. Transcriptional analysis suggested that SbbR directly activates the transcription of milR, while represses its own transcription and that of sbbA. Moreover, 11 novel targets of SbbR were additionally found, including seven regulatory genes located in secondary metabolite biosynthetic gene clusters (e.g., sbi_08420, sbi_08432, sbi_09158, sbi_00827, sbi_01376, sbi_09325, and sig24sbh ) and four well-known global regulatory genes (e.g., glnRsbh , wblAsbh , atrAsbh , and mtrA/Bsbh ). These data suggest that SbbR is not only a direct activator of milbemycin production, but also a pleiotropic regulator that controls the expression of other cluster-situated regulatory genes and global regulatory genes. Overall, this study reveals the upper-layer regulatory system that controls milbemycin biosynthesis, which will not only expand our understanding of the complex regulation in milbemycin biosynthesis, but also provide a basis for an approach to improve milbemycin production via genetic manipulation of SbbR/SbbA system.


Molecular epidemiology of Japanese encephalitis virus in mosquitoes during an outbreak in China, 2013.

  • Zexin Tao‎ et al.
  • Scientific reports‎
  • 2014‎

Japanese encephalitis virus (JEV) can cause serious encephalitis and Culex mosquitoes are the primary vector. In 2013, a JE outbreak occurred in Shandong Province, China with 407 confirmed cases, including 11 deaths. An investigation on JEV in mosquitoes during the outbreak was conducted. A total of 14,719 mosquitoes were collected at 3 sites. For the 12,695 Culex tritaeniorhynchus mosquitoes, 88/201 pooled samples were positive by RT-PCR for the presence of the pre-membrane or envelope protein coding genes. The maximum likelihood estimates of JEV positive individuals per 1,000 vectors were 12.0, 7.2, and 6.0 in the 3 sites respectively with an overall estimate of 9.1. Phylogenetic analysis on these pre-membrane (n = 72) and envelope (n = 26) sequences with those of reference strains revealed they belonged to genotype I. This study describes the molecular epidemiology of JEV and suggests the high infection rate in mosquitoes is an important factor for the outbreak.


High-Fat Diet-Induced Insulin Resistance in Single Skeletal Muscle Fibers is Fiber Type Selective.

  • Mark W Pataky‎ et al.
  • Scientific reports‎
  • 2017‎

Skeletal muscle is the major site for insulin-stimulated glucose disposal, and muscle insulin resistance confers many negative health outcomes. Muscle is composed of multiple fiber types, and conventional analysis of whole muscles cannot elucidate fiber type differences at the cellular level. Previous research demonstrated that a brief (two weeks) high fat diet (HFD) caused insulin resistance in rat skeletal muscle. The primary aim of this study was to determine in rat skeletal muscle the influence of a brief (two weeks) HFD on glucose uptake (GU) ± insulin in single fibers that were also characterized for fiber type. Epitrochlearis muscles were incubated with [3H]-2-deoxyglucose (2DG) ± 100 µU/ml insulin. Fiber type (myosin heavy chain expression) and 2DG accumulation were measured in whole muscles and single fibers. Although fiber type composition of whole muscles did not differ between diet groups, GU of insulin-stimulated whole muscles from LFD rats significantly exceeded HFD values (P < 0.005). For HFD versus LFD rats, GU of insulin-stimulated single fibers was significantly (P < 0.05) lower for IIA, IIAX, IIBX, IIB, and approached significance for IIX (P = 0.100), but not type I (P = 0.776) fibers. These results revealed HFD-induced insulin resistance was attributable to fiber type selective insulin resistance and independent of altered fiber type composition.


Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients.

  • Lun Cai‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2008‎

Functional defects in natural killer (NK) cells have been proposed to be responsible for the failure of anti-tumor immune responses. Whether and how NK cells are impaired in hepatocellular carcinoma (HCC) patients remain unknown. In this study, we found that HCC patients displayed a dramatic reduction in peripheral CD56(dim)CD16(pos) NK subsets compared with healthy subjects. A significant reduction of CD56(dim)CD16(pos) NK subsets was also found in tumor regions compared with non-tumor regions in the livers of these HCC patients. Both these peripheral and tumor-infiltrating NK cells exhibited poorer capacity to produce IFN-gamma and kill K562 targets, which was further found to be associated with increased CD4(+)CD25(+) T regulatory cells as we previously-described in HCC patients. Addition of Tregs from HCC patients efficiently inhibited the anti-tumor ability of autologous NK cells in vitro. These findings are helpful for understanding the mechanism of NK cell-mediated anti-tumor immune responses in HCC patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: