Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 117 papers

A disordered region in the EvpP protein from the type VI secretion system of Edwardsiella tarda is essential for EvpC binding.

  • Wentao Hu‎ et al.
  • PloS one‎
  • 2014‎

The type VI secretion system (T6SS) of pathogenic bacteria plays important roles in both virulence and inter-bacterial competitions. The effectors of T6SS are presumed to be transported either by attaching to the tip protein or by interacting with HcpI (haemolysin corregulated protein 1). In Edwardsiella tarda PPD130/91, the T6SS secreted protein EvpP (E. tarda virulent protein P) is found to be essential for virulence and directly interacts with EvpC (Hcp-like), suggesting that it could be a potential effector. Using limited protease digestion, nuclear magnetic resonance heteronuclear Nuclear Overhauser Effects, and hydrogen-deuterium exchange mass spectrometry, we confirmed that the dimeric EvpP (40 kDa) contains a substantial proportion (40%) of disordered regions but still maintains an ordered and folded core domain. We show that an N-terminal, 10-kDa, protease-resistant fragment in EvpP connects to a shorter, 4-kDa protease-resistant fragment through a highly flexible region, which is followed by another disordered region at the C-terminus. Within this C-terminal disordered region, residues Pro143 to Ile168 are essential for its interaction with EvpC. Unlike the highly unfolded T3SS effector, which has a lower molecular weight and is maintained in an unfolded conformation with a dedicated chaperone, the T6SS effector seems to be relatively larger, folded but partially disordered and uses HcpI as a chaperone.


Microarray analysis of gene expression in fibrovascular membranes excised from patients with proliferative diabetic retinopathy.

  • Keijiro Ishikawa‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2015‎

We determined the profile of genes expressed in fibrovascular membranes (FVMs).


Down-regulation of BTG1 by miR-454-3p enhances cellular radiosensitivity in renal carcinoma cells.

  • Xin Wu‎ et al.
  • Radiation oncology (London, England)‎
  • 2014‎

B cell translocation gene 1 (BTG1) has long been recognized as a tumor suppressor gene. Recent reports demonstrated that BTG1 plays an important role in progression of cell cycle and is involved in cellular response to stressors. However, the microRNAs mediated regulatory mechanism of BTG1 expression has not been reported so far. MicroRNAs can effectively influence tumor radiosensitivity by preventing cell cycle progression, resulting in enhancement of the cytotoxicity of radiotherapy efficacy. This study aimed to demonstrating the effects of microRNAs on the BTG1 expression and cellular radiosensitivity.


Berberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) Symptoms in an Opioid-Receptor Dependent Manner.

  • Chunqiu Chen‎ et al.
  • PloS one‎
  • 2015‎

Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI) tract and cortical neurons using animal models and in vitro tests.


Interleukin-12 inhibits pathological neovascularization in mouse model of oxygen-induced retinopathy.

  • Yedi Zhou‎ et al.
  • Scientific reports‎
  • 2016‎

Hypoxia-induced retinal neovascularization is a major pathological condition in many vision-threatening diseases. In the present study, we determined whether interleukin (IL)-12, a cytokine that regulates angiogenesis, plays a role in the neovascularization in a mouse model of oxygen-induced retinopathy (OIR). We found that the expressions of the mRNAs of both IL-12p35 and IL-12p40 were significantly reduced in the OIR retinas compared to that of the room air-raised control. The sizes of the avascular areas and neovascular tufts were larger in IL-12p40 knock-out (KO) mice than that in wild type (WT) mice. In addition, an intravitreal injection of recombinant IL-12 reduced both avascular areas and neovascular tufts. IL-12 injection enhanced the expressions of interferon-gamma (IFN-γ) and other downstream chemokines. In an in vitro system, IL-12 had no significant effect on tube formation of human retinal microvascular endothelial cells (HRECs). Moreover, a blockade of IFN-γ suppressed the inhibitory effect of IL-12 on pathological neovascularization. These results suggest that IL-12 plays important roles in inhibiting pathological retinal neovascularization.


Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes.

  • Ryo Asato‎ et al.
  • PloS one‎
  • 2013‎

Proliferative vitreoretinopathy (PVR) is a destructive complication of retinal detachment and vitreoretinal surgery which can lead to severe vision reduction by tractional retinal detachments. The purpose of this study was to determine the gene expression profile of epiretinal membranes (ERMs) associated with a PVR (PVR-ERM) and to compare it to the expression profile of less-aggressive secondary ERMs.


Prognostic values of GMPS, PR, CD40, and p21 in ovarian cancer.

  • Ping Wang‎ et al.
  • PeerJ‎
  • 2019‎

Early detection and prediction of prognosis and treatment responses are all the keys in improving survival of ovarian cancer patients. This study profiled an ovarian cancer progression model to identify prognostic biomarkers for ovarian cancer patients. Mouse ovarian surface epithelial cells (MOSECs) can undergo spontaneous malignant transformation in vitro cell culture. These were used as a model of ovarian cancer progression for alterations in gene expression and signaling detected using the Illumina HiSeq2000 Next-Generation Sequencing platform and bioinformatical analyses. The differential expression of four selected genes was identified using the gene expression profiling interaction analysis (http://gepia.cancer-pku.cn/) and then associated with survival in ovarian cancer patients using the Cancer Genome Atlas dataset and the online Kaplan-Meier Plotter (http://www.kmplot.com) data. The data showed 263 aberrantly expressed genes, including 182 up-regulated and 81 down-regulated genes between the early and late stages of tumor progression in MOSECs. The bioinformatic data revealed four genes (i.e., guanosine 5'-monophosphate synthase (GMPS), progesterone receptor (PR), CD40, and p21 (cyclin-dependent kinase inhibitor 1A)) to play an important role in ovarian cancer progression. Furthermore, the Cancer Genome Atlas dataset validated the differential expression of these four genes, which were associated with prognosis in ovarian cancer patients. In conclusion, this study profiled differentially expressed genes using the ovarian cancer progression model and identified four (i.e., GMPS, PR, CD40, and p21) as prognostic markers for ovarian cancer patients. Future studies of prospective patients could further verify the clinical usefulness of this four-gene signature.


SMAD-6, -7 and -9 are potential molecular biomarkers for the prognosis in human lung cancer.

  • Shuxian Pan‎ et al.
  • Oncology letters‎
  • 2020‎

SMADs, a family of proteins that function as signal transducers and transcriptional regulators to regulate various signaling pathways, including the transforming growth factor-β signaling pathway, are similar to the mothers against decapentaplegic family of genes and the sma gene family in Caenorhabditis elegans. SMADs generate context-dependent modulation by interacting with various sequence-specific transcription factors, such as E2F4/5, c-Fos, GATA3, YY1 and SRF, which have been found to serve a key role in lung carcinoma oncogenesis and progression. However, the prognostic values of the eight SMADs in lung cancer have not been fully understood. In the present study, the expression levels and survival data of SMADs in patients with lung carcinoma from the Oncomine, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter and cBioPortal databases were downloaded and analyzed. It was found that the mRNA expression levels of SMAD-6, -7 and -9 were decreased in lung adenocarcinoma and squamous cell carcinoma compared with that in adjacent normal tissues, while there was no significant difference in SMADs 1-5. Survival analysis revealed that not only were low transcriptional levels of SMAD-6, -7 and -9 associated with low overall survival but they also had prognostic role for progression-free survival and post-progression survival (P<0.05) in patients with lung carcinoma. In conclusion, the present study demonstrated that SMAD-6, -7 and -9 are potential biomarkers for the prognosis of patients with lung carcinoma.


Maturation of the Acute Hepatic TLR4/NF-κB Mediated Innate Immune Response Is p65 Dependent in Mice.

  • Miguel A Zarate‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBβ), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.


Altered Long Non-coding RNAs Involved in Immunological Regulation and Associated with Choroidal Neovascularization in Mice.

  • Liwei Zhang‎ et al.
  • International journal of medical sciences‎
  • 2020‎

Choroidal neovascularization (CNV) is a severe complication of the wet form of age-related macular degeneration (AMD). Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of different ocular neovascular diseases. To identify the function and therapeutic potential of lncRNAs in CNV, we assessed lncRNAs and mRNA expression profile in a mouse model of laser-induced CNV by microarray analysis. The results of altered lncRNAs were validated by qRT-PCR. Bioinformatics analyses, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed to clarify the potential biological functions and signaling pathways with which altered genes are most closely related. Moreover, to identify the interaction of lncRNAs and mRNAs, we constructed a coding-non-coding gene co-expression (CNC) network. By microarray analysis, we identified 716 altered lncRNAs and 821 altered mRNAs in CNV mice compared to controls. A CNC network profile based on 7 validated altered lncRNAs (uc009ewo.1, AK148935, uc029sdr.1, ENSMUST00000132340, AK030988, uc007mds.1, ENSMUST00000180519) as well as 282 interacted and altered mRNAs, and were connected by 713 edges. GO and KEGG analyses suggested that altered mRNAs, as well as those lncRNA-interacted mRNAs were enriched in immune system process and chemokine signaling pathway. Thus, lncRNAs are significantly altered in this mouse model of CNV and are involved in immunological regulation, suggesting that lncRNAs may play a critical role in the pathogenesis of CNV. Thus, dysregulated lncRNAs and their target genes might be promising therapeutic targets to suppress CNV in AMD.


Lowering iron level protects against bone loss in focally irradiated and contralateral femurs through distinct mechanisms.

  • Jian Zhang‎ et al.
  • Bone‎
  • 2019‎

Radiation therapy leads to increased risk of late-onset fragility and bone fracture due to the loss of bone mass. On the other hand, iron overloading causes osteoporosis by enhancing bone resorption. It has been shown that total body irradiation increases iron level, but whether the systemic bone loss is related to the changes in iron level and hepcidin regulation following bone irradiation remains unknown. To investigate the potential link between them, we first created an animal model of radiation-induced systemic bone loss by targeting the mid-shaft femur with a single 2 Gy dose of X-rays. We found that mid-shaft femur focal irradiation led to structural deterioration in the distal region of the trabecular bone with increased osteoclasts surface and expressions of bone resorption markers in both irradiated and contralateral femurs relative to non-irradiated controls. Following irradiation, reduced hepcidin activity of the liver contributed to elevated iron levels in the serum and liver. By injecting hepcidin or deferoxamine (an iron chelator) to reduce iron level, deterioration of trabecular bone microarchitecture in irradiated mice was abrogated. The ability of iron chelation to inhibit radiation-induced osteoclast differentiation was observed in vitro as well. We further showed that ionizing radiation (IR) directly stimulated osteoclast differentiation and bone resorption in bone marrow cells isolated not from contralateral femurs but from directly irradiated femurs. These results suggest that increased iron levels after focal radiation is at least one of the main reasons for systemic bone loss. Furthermore, bone loss in directly irradiated bones is not only due to the elevated iron level, but also from increased osteoclast differentiation. In contrast, the bone loss in the contralateral femurs is mainly due to the elevated iron level induced by IR alone. These novel findings provide proof-of-principle evidence for the use of iron chelation or hepcidin as therapeutic treatments for IR-induced osteoporosis.


Loss of periostin ameliorates adipose tissue inflammation and fibrosis in vivo.

  • Fumiko Nakazeki‎ et al.
  • Scientific reports‎
  • 2018‎

Recent evidence suggests that the accumulation of macrophages as a result of obesity-induced adipose tissue hypoxia is crucial for the regulation of tissue fibrosis, but the molecular mechanisms underlying adipose tissue fibrosis are still unknown. In this study, we revealed that periostin (Postn) is produced at extraordinary levels by adipose tissue after feeding with a high-fat diet (HFD). Postn was secreted at least from macrophages in visceral adipose tissue during the development of obesity, possibly due to hypoxia. Postn-/- mice had lower levels of crown-like structure formation and fibrosis in adipose tissue and were protected from liver steatosis. These mice also showed amelioration in systemic insulin resistance compared with HFD-fed WT littermates. Mice deficient in Postn in their hematopoietic compartment also had lower levels of inflammation in adipose tissue, in parallel with a reduction in ectopic lipid accumulation compared with the controls. Our data indicated that the regulation of Postn in visceral fat could be beneficial for the maintenance of healthy adipose tissue in obesity.


Periostin and tenascin-C interaction promotes angiogenesis in ischemic proliferative retinopathy.

  • Yuki Kubo‎ et al.
  • Scientific reports‎
  • 2020‎

Ischemic proliferative retinopathy (IPR), such as proliferative diabetic retinopathy (PDR), retinal vein occlusion and retinopathy of prematurity is a major cause of vision loss. Our previous studies demonstrated that periostin (PN) and tenascin-C (TNC) are involved in the pathogenesis of IPR. However, the interactive role of PN and TNC in angiogenesis associated with IPR remain unknown. We found significant correlation between concentrations of PN and TNC in PDR vitreous humor. mRNA and protein expression of PN and TNC were found in pre-retinal fibrovascular membranes excised from PDR patients. Interleukin-13 (IL-13) promoted mRNA and protein expression of PN and TNC, and co-immunoprecipitation assay revealed binding between PN and TNC in human microvascular endothelial cells (HRECs). IL-13 promoted angiogenic functions of HRECs. Single inhibition of PN or TNC and their dual inhibition by siRNA suppressed the up-regulated angiogenic functions. Pathological pre-retinal neovessels of oxygen-induced retinopathy (OIR) mice were attenuated in PN knock-out, TNC knock-out and dual knock-out mice compared to wild-type mice. Both in vitro and in vivo, PN inhibition had a stronger inhibitory effect on angiogenesis compared to TNC inhibition, and had a similar effect to dual inhibition of PN and TNC. Furthermore, PN knock-out mice showed scant TNC expression in pre-retinal neovessels of OIR retinas. Our findings suggest that interaction of PN and TNC facilitates pre-retinal angiogenesis, and PN is an effective therapeutic target for IPR such as PDR.


Comprehensive Bioinformatics Analysis to Identify the Gene HMMR Associated With Lung Adenocarcinoma Prognosis and Its Mechanism of Action in Multiple Cancers.

  • Jianguang Shi‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Lung cancer is the third most frequently diagnosed cancer in the world, with lung adenocarcinoma (LUAD) as the most common pathological type. But studies on the predictive effect of a single gene on LUAD are limited. We aimed to discover new predictive markers for LUAD.


Safety Evaluation and Probiotic Potency Screening of Akkermansia muciniphila Strains Isolated from Human Feces and Breast Milk.

  • Fengyi Hou‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Akkermansia muciniphila is considered a next-generation probiotic because of its immense potential to regulate disorders. We isolated 31 strains of A. muciniphila from feces or breast milk of healthy people. After genome sequencing, assembly, and analysis, we selected six strains (AM01 to AM06) for further exploration. We first analyzed their general characteristics, including morphological description, growth characteristics, and physiological and biochemical characteristics, and then confirmed their genetic characteristics, including GC content, putative virulence factors, and antibiotic resistance genes. We next investigated the tolerance of these strains to artificial gastric and intestinal fluids and bile salts to evaluate their survival potential in the digestive tract. Drug sensitivity tests were also conducted based on the analysis of the antibiotic resistance genes of these strains. Furthermore, we examined the genetic stability and acute toxicity of two strains (AM02 and AM06) in mice. Finally, the safety of AM06 was evaluated in normal mice and nude mice. AM06 exhibited adaptability to pH changes. Since AM02 and AM03 showed more resistance to antibiotics than AM01 and AM04 to AM06, their potential clinical application may be limited. Both AM02 and AM06 were genetically and phenotypically stable and safe in normal mice, and AM06 was safe in nude mice. Considering all this together, AM06 is a safe A. muciniphila strain and exhibits a great potential for use as a probiotic strain among the isolated strains. IMPORTANCE In this study, we isolated 30 strains of Akkermansia muciniphila from different samples of human feces, and for the first time we isolated an A. muciniphila strain from human breast milk. This isolation verified the existence of microbes in human breast milk, which suggests that A. muciniphila can be vertically propagated from mother to infant and participates in the formation of the early gut microbiome. We then systematically evaluated the potential for use as a probiotic of this A. muciniphila strains according to the FAO/WHO recommendation. We confirmed that the AM06 strain isolated from breast milk has no virulence factors and is genetically stable and nonpathogenic for both normal mice and nude mice. Moreover, its tolerance to pH changes and bile salts indicates its desirable probiotic properties. Thus, we propose that the AM06 strain of A. muciniphila is safe for use as a probiotic candidate.


Functional ultrasound imaging reveals 3D structure of orientation domains in ferret primary visual cortex.

  • Wentao Hu‎ et al.
  • NeuroImage‎
  • 2023‎

The sensory cortex is organized into "maps" that represent sensory space across cortical space. In primary visual cortex (V1) of highly visual mammals, multiple visual feature maps are organized into a functional architecture anchored by orientation domains: regions containing neurons preferring the same stimulus orientation. Although the pinwheel-like structure of orientation domains is well-characterized in the superficial cortical layers in dorsal regions of V1, the 3D shape of orientation domains spanning all 6 cortical layers and across dorsal and ventral regions of V1 has never been revealed.


c-Myc-activated USP2-AS1 suppresses senescence and promotes tumor progression via stabilization of E2F1 mRNA.

  • Bingyan Li‎ et al.
  • Cell death & disease‎
  • 2021‎

The c-Myc oncoprotein plays a prominent role in cancer initiation, progression, and maintenance. Long noncoding RNAs (lncRNAs) are recently emerging as critical regulators of the c-Myc signaling pathway. Here, we report the lncRNA USP2-AS1 as a direct transcriptional target of c-Myc. Functionally, USP2-AS1 inhibits cellular senescence and acts as an oncogenic molecule by inducing E2F1 expression. Mechanistically, USP2-AS1 associates with the RNA-binding protein G3BP1 and facilitates the interaction of G3BP1 to E2F1 3'-untranslated region, thereby leading to the stabilization of E2F1 messenger RNA. Furthermore, USP2-AS1 is shown as a mediator of the oncogenic function of c-Myc via the regulation of E2F1. Together, these findings suggest that USP2-AS1 is a negative regulator of cellular senescence and also implicates USP2-AS1 as an important player in mediating c-Myc function.


PRC1 promotes cell proliferation and cell cycle progression by regulating p21/p27-pRB family molecules and FAK-paxillin pathway in non-small cell lung cancer.

  • Zhigang Liang‎ et al.
  • Translational cancer research‎
  • 2019‎

This study aimed to demonstrate the function and molecular mechanism of protein regulator of cytokinesis 1 (PRC1) in the carcinogenesis of non-small cell lung cancer (NSCLC).


TNFRSF10A downregulation induces retinal pigment epithelium degeneration during the pathogenesis of age-related macular degeneration and central serous chorioretinopathy.

  • Kenichiro Mori‎ et al.
  • Human molecular genetics‎
  • 2022‎

Age-related macular degeneration (AMD) and central serous chorioretinopathy (CSC) are common diseases that can cause vision loss in older and younger populations. These diseases share pathophysiological conditions derived from retinal pigment epithelium (RPE) dysfunction. Tumor necrosis factor receptor superfamily 10A (TNFRSF10A)-LOC389641 with the same lead single-nucleotide polymorphism (SNP) (rs13278062) is the only overlapped susceptibility locus found in both AMD and CSC through genome-wide association studies. This lead SNP has been reported to alter the transcriptional activity of TNFRSF10A. This study aimed to elucidate the function of TNFRSF10A in RPE degeneration using human primary RPE cells and Tnfrsf10 knockout (Tnfrsf10-/-) mice. TNFRSF10A was found to be localized in human RPE. In vitro assays revealed that a T allele of rs13278062, the risk allele for AMD and CSC, downregulated TNFRSF10A transcription in RPE, leading to decreased cell viability and increased apoptosis through protein kinase C-α (PKCA) downregulation. Treatment with phorbol 12-myristate 13-acetate, a PKC activator, rescued the cell viability. Morphological RPE abnormality was found in the retina of Tnfrsf10-/- mice. Our data suggest that downregulation of TNFRSF10A expression inactivates PKCA signaling and causes cellular vulnerability of the RPE, which may contribute to the pathogenesis of AMD and CSC.


Reciprocal modulation of long noncoding RNA EMS and p53 regulates tumorigenesis.

  • Chenfeng Wang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

p53 plays a central role in tumor suppression. Emerging evidence suggests long noncoding RNA (lncRNA) as an important class of regulatory molecules that control the p53 signaling. Here, we report that the oncogenic lncRNA E2F1 messenger RNA (mRNA) stabilizing factor (EMS) and p53 mutually repress each other's expression. EMS is negatively regulated by p53. As a direct transcriptional repression target of p53, EMS is surprisingly shown to inhibit p53 expression. EMS associates with cytoplasmic polyadenylation element-binding protein 2 (CPEB2) and thus, disrupts the CPEB2-p53 mRNA interaction. This disassociation attenuates CPEB2-mediated p53 mRNA polyadenylation and suppresses p53 translation. Functionally, EMS is able to exert its oncogenic activities, at least partially, via the CPEB2-p53 axis. Together, these findings reveal a double-negative feedback loop between p53 and EMS, through which p53 is finely controlled. Our study also demonstrates a critical role for EMS in promoting tumorigenesis via the negative regulation of p53.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: