Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Mitochondrial DNA Haplogroup M7 Confers Disability in a Chinese Aging Population.

  • Dayan Sun‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Mitochondrial DNA (mtDNA) haplogroups have been associated with functional impairments (i.e., decreased gait speed and grip strength, frailty), which are risk factors of disability. However, the association between mtDNA haplogroups and ADL disability is still unclear. In this study, we conducted an investigation of 25 mtSNPs defining 17 major mtDNA haplogroups for ADL disability in an aging Chinese population. We found that mtDNA haplogroup M7 was associated with an increased risk of disability (OR = 3.18 [95% CI = 1.29-7.83], P = 0.012). The survival rate of the M7 haplogroup group (6.1%) was lower than that of the non-M7 haplogroup group (9.5%) after a 6-year follow-up. In cellular studies, cytoplasmic hybrid (cybrid) cells with the M7 haplogroup showed distinct mitochondrial functions from the M8 haplogroup. Specifically, the respiratory chain complex capacity was significantly lower in M7 haplogroup cybrids than in M8 haplogroup cybrids. Furthermore, an obvious decreased mitochondrial membrane potential and 40% reduced ATP-linked oxygen consumption were found in M7 haplogroup cybrids compared to M8 haplogroup cybrids. Notably, M7 haplogroup cybrids generated more reactive oxygen species (ROS) than M8 haplogroup cybrids. Therefore, the M7 haplogroup may contribute to the risk of disability via altering mitochondrial function to some extent, leading to decreased oxygen consumption, but increased ROS production, which may activate mitochondrial retrograde signaling pathways to impair cellular and tissue function.


Exosomal Circular RNA as a Biomarker Platform for the Early Diagnosis of Immune-Mediated Demyelinating Disease.

  • Jinting He‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Exosomes can pass through the blood-brain barrier and are present in the cerebrospinal fluid (CSF). The components in exosomes, such as DNA, RNA, protein, and lipids, change greatly and are closely related to disease progression. Circular RNA (circRNA) is stable in structure and has a long half-life in exosomes without degradation. Therefore, circRNA is considered an ideal biomarker and can be used to monitor a variety of central nervous system diseases. This study aimed to investigate the expression profiles of exosomal circRNA (exo-circRNA) in CSF from patients with immune-mediated demyelinating diseases to identify suitable biomarkers for the early diagnosis of immune-mediated demyelinating diseases. circRNA expression levels in exosomes obtained from five CSF samples from immune-mediated demyelinating disease patients and five paired CSF control samples were analyzed using a hybridization array. Hierarchical clustering analysis showed that 5,095 exo-circRNAs were differentially expressed between patients with immune-mediated demyelinating diseases and paired control samples. Of these exo-circRNAs, 26 were identified as significantly differentially expressed in CSF exosomes from patients with immune-mediated demyelinating diseases (FC ≥1.5 and p ≤ 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the upregulation or activation of protein tyrosine phosphatase receptor type F (PTPRF) and RAD23 homolog B, nucleotide excision repair protein (RAD23B) may be associated with the occurrence and development of immune-mediated demyelinating diseases. Then, a competing endogenous RNA network was constructed and centered on the most upregulated/downregulated exo-circRNAs to predict their function in immune-mediated demyelinating diseases. In addition, reverse transcription quantitative polymerase chain reaction results stating that hsa_circ_0087862 and hsa_circ_0012077 were validated in an independent cohort of subjects. Canonical correlation analysis results indicated a potential connection between exosomal hsa_circ_0012077 expression level and immunoglobulin G levels in CSF. Finally, the receiver operating characteristic (ROC) curve showed that when hsa_circ_0087862 or hsa_circ_0012077 was employed alone for diagnosing immune-mediated demyelinating diseases, the diagnostic accuracy was 100%. In conclusion, based on this study, exosomal hsa_circ_0087862 and hsa_circ_0012077 in CSF could be used as suitable biomarkers for the diagnosis of immune-mediated demyelinating disease based on their expression levels. Moreover, the upregulation or activation of PTPRF and RAD23B was potentially associated with the occurrence and development of immune-mediated demyelinating diseases.


A Diagnostic Model Using Exosomal Genes for Colorectal Cancer.

  • Tianxiang Lei‎ et al.
  • Frontiers in genetics‎
  • 2022‎

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Exosomes have great potential as liquid biopsy specimens due to their presence and stability in body fluids. However, the function and diagnostic values of exosomal genes in CRC are poorly understood. In the present study, exosomal data of CRC and healthy samples from the exoRBase 2.0 and Gene Expression Omnibus (GEO) databases were used, and 38 common exosomal genes were identified. Through the least absolute shrinkage and selection operator (Lasso) analysis, support vector machine recursive feature elimination (SVM-RFE) analysis, and logistic regression analysis, a diagnostic model of the training set was constructed based on 6 exosomal genes. The diagnostic model was internally validated in the test and exoRBase 2.0 database and externally validated in the GEO database. In addition, the co-expression analysis was used to cluster co-expression modules, and the enrichment analysis was performed on module genes. Then a protein-protein interaction and competing endogenous RNA network were constructed and 10 hub genes were identified using module genes. In conclusion, the results provided a comprehensive understanding of the functions of exosomal genes in CRC as well as a diagnostic model related to exosomal genes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: