Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,204 papers

Evaluation of five methods for total DNA extraction from western corn rootworm beetles.

  • Hong Chen‎ et al.
  • PloS one‎
  • 2010‎

DNA extraction is a routine step in many insect molecular studies. A variety of methods have been used to isolate DNA molecules from insects, and many commercial kits are available. Extraction methods need to be evaluated for their efficiency, cost, and side effects such as DNA degradation during extraction.


Dickkopf homolog 1, a Wnt signaling antagonist, is transcriptionally up-regulated via an ATF4-independent and MAPK/ERK-dependent pathway following amino acid deprivation.

  • Dan Zhou‎ et al.
  • Biochimica et biophysica acta‎
  • 2011‎

Amino acid response (AAR) pathway is activated when cells are deprived of amino acids. In the present study, using the human colon cancer cell line SW480, we observed that DKK1, an antagonist of the Wnt pathway, was significantly induced at the mRNA level after the removal of amino acids from the medium. Addition of the amino alcohol histidinol, which prevents the formation of histidinyl-tRNA(His), also increased DKK1 mRNA to a level similar to that observed when cells were deprived of all amino acids. Transcriptional activity and stability of DKK1 mRNA were both increased in the amino acid-deprived condition. The induction of DKK1 gene expression was confirmed by the increased immunofluorescent staining of the DKK1 protein in the amino acid deprived condition. Although chromatin immunoprecipitation assays showed increased RNA Polymerase II binding at the DKK1 promoter in amino acid-limited conditions, ATF4 binding to the promoter is absent. Luciferase reporter assays did not detect any functional AARE within the DKK1 gene structure. Knockdown of ATF4 by siRNA did not affect the increase of DKK1 mRNA during amino acid limitation. Inhibition of ERK phosphorylation abolished the induction of DKK1. Our study revealed that DKK1 is a novel target gene in the response to amino acid deficiency and that the expression of DKK1 is up-regulated through an ATF4-independent and an ERK-dependent pathway.


Regulation of increased glutamatergic input to spinal dorsal horn neurons by mGluR5 in diabetic neuropathic pain.

  • Ji-Qing Li‎ et al.
  • Journal of neurochemistry‎
  • 2010‎

Diabetic neuropathic pain is associated with increased glutamatergic input in the spinal dorsal horn. Group I metabotropic glutamate receptors (mGluRs) are involved in the control of neuronal excitability, but their role in the regulation of synaptic transmission in diabetic neuropathy remains poorly understood. Here we studied the role of spinal mGluR5 and mGluR1 in controlling glutamatergic input in a rat model of painful diabetic neuropathy induced by streptozotocin. Whole-cell patch-clamp recordings of lamina II neurons were performed in spinal cord slices. The amplitude of excitatory post-synaptic currents (EPSCs) evoked from the dorsal root and the frequency of spontaneous EPSCs (sEPSCs) were significantly higher in diabetic than in control rats. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) inhibited evoked EPSCs and sEPSCs more in diabetic than in control rats. Also, the percentage of neurons in which sEPSCs and evoked EPSCs were affected by MPEP or the group I mGluR agonist was significantly higher in diabetic than in control rats. However, blocking mGluR1 had no significant effect on evoked EPSCs and sEPSCs in either groups. The mGluR5 protein level in the dorsal root ganglion, but not in the dorsal spinal cord, was significantly increased in diabetic rats compared with that in control rats. Furthermore, intrathecal administration of MPEP significantly increased the nociceptive pressure threshold only in diabetic rats. These findings suggest that increased mGluR5 expression on primary afferent neurons contributes to increased glutamatergic input to spinal dorsal horn neurons and nociceptive transmission in diabetic neuropathic pain.


Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme.

  • Jun He‎ et al.
  • BMC biotechnology‎
  • 2009‎

In recent years, xylanases have attracted considerable research interest because of their potential in various industrial applications. The yeast Pichia pastoris can neither utilize nor degrade xylan, but it possesses many attributes that render it an attractive host for the expression and production of industrial enzymes.


Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice.

  • Jie Yu‎ et al.
  • PloS one‎
  • 2014‎

Prolonged and excessive glucocorticoids (GC) exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g) were administrated with 100 µg/ml corticosterone (CORT) or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue.


Haplotypes in the promoter region of the CIDEC gene associated with growth traits in Nanyang cattle.

  • Jing Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Cell death-inducing DFFA-like effector c (CIDEC, also known as Fsp27) has emerged as an important regulator of metabolism associated with lipodystrophy, diabetes, and hepatic steatosis. It is required for unilocular lipid droplet formation and optimal energy storage. The mechanism between this gene and livestock growth traits, however, has yet to be reported. In this study, we found ten novel single nucleotide polymorphisms (SNPs) in the 5' transcriptional region of CIDEC in Nanyang (NY) cattle, which are located in the recognition sequences (potential cis-acting elements) of 22 transcription factors, and the nine haplotypes represent nine different combinations of polymorphic potential cis-acting elements. The results indicated that individuals with the H8-H8 diplotype had heavier body weights and faster growth rates (P < 0.01) at 18th months than those with H1-H8. We evaluated the transcriptional activities of different haplotypes in vitro, the results were consistent with the association analysis. The H8 haplotype had 1.88-fold (P < 0.001) higher transcriptional activity than the H1 haplotype. We speculate that the haplotypes of the potential cis-acting elements may affect the transcriptional activity of CIDEC, thus affecting the growth traits of cattle. This information may be used in molecular marker-assisted selection of cattle breeding in the future.


Genome-wide methylome analyses reveal novel epigenetic regulation patterns in schizophrenia and bipolar disorder.

  • Yongsheng Li‎ et al.
  • BioMed research international‎
  • 2015‎

Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population, Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and BP preferentially located in promoters 3'-UTRs and 5'-UTRs of genes. Distinct patterns of aberrant methylation of promoter sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands (CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter CGIs hypermethylation with gene repression and (2) CGI 3'-shore hypomethylation with increased gene expression. Finally, we constructed a specific methylation analysis platform that facilitates viewing and comparing aberrant genome methylation in human neuropsychiatric disorders.


Effects of benzoic Acid and thymol on growth performance and gut characteristics of weaned piglets.

  • Hui Diao‎ et al.
  • Asian-Australasian journal of animal sciences‎
  • 2015‎

A total of 144 weaned crossed pigs were used in a 42-d trial to explore the effects of different concentrations/combinations of benzoic acid and thymol on growth performance and gut characteristics in weaned pigs. Pigs were randomly allotted to 4 dietary treatments: i) control (C), basal diet, ii) C+1,000 mg/kg benzoic acid+100 mg/kg thymol (BT1), iii) C+1,000 mg/kg benzoic acid+200 mg/kg thymol (BT2) and, iv) C+2,000 mg/kg benzoic acid+100 mg/kg thymol (BT3). Relative to the control, pigs fed diet BT3 had lower diarrhoea score during the overall period (p<0.10) and improved feed to gain ratio between days 1 to 14 (p<0.05), which was accompanied by improved apparent total tract digestibility of ether extract, Ca and crude ash (p<0.05), and larger lipase, lactase and sucrose activities in the jejunum (p<0.05) at d 14 and d 42. Similarly, relative to the control, pigs fed diet BT3 had higher counts for Lactobacillus spp in digesta of ileum at d 14 (p<0.05), and pigs fed diets BT1, BT2, or BT3 also had higher counts of Bacillus spp in digesta of caecum at d 14 (p<0.05), and lower concentration of ammonia nitrogen in digesta of caecum at d 14 and d 42 (p<0.05). Finally, pigs fed diet BT3 had higher concentration of butyric acid in digesta of caecum at d 42 (p<0.05), and a larger villus height:crypt depth ratio in jejunum and ileum at d 14 (p<0.05) than pigs fed the control diet. In conclusion, piglets fed diet supplementation with different concentrations/combinations of benzoic acid and thymol could improve feed efficiency and diarrhoea, and improve gut microfloral composition. The combination of 2,000 mg/kg benzoic acid+100 mg/kg thymol produced better effects than other treatments in most measurements.


Clopidogrel reduces the inflammatory response of lung in a rat model of decompression sickness.

  • Xiao-Chen Bao‎ et al.
  • Respiratory physiology & neurobiology‎
  • 2015‎

Inflammation and platelet activation are critical phenomena in the setting of decompression sickness. Clopidogrel (Clo) inhibits platelet activation and may also reduce inflammation. The goal of this study was to investigate if Clo had a protective role in decompression sickness (DCS) through anti-inflammation way. Male Sprague-Dawley rats (n=111) were assigned to three groups: control+vehicle group, DCS+vehicle, DCS+Clo group. The experimental group received 50 mg/kg of Clo or vehicle for 3 days, then compressed to 1,600 kPa (150 msw) in 28 s, maintained at 150 msw for 242 s and decompressed to surface at 3m/s. In a control experiment, rats were also treated with vehicle for 3 days and maintained at atmospheric pressure for an equivalent period of time. Clinical assessment took place over a period of 30 min after surfacing. At the end, blood samples were collected for blood cells counts and cytokine detection. The pathology and the wet/dry ratio of lung tissues, immunohistochemical detection of lung tissue CD41 expression, the numbers of P-selectin positive platelets and platelet-leukocyte conjugates in blood were tested. We found that Clo significantly reduced the DCS mortality risk (mortality rate: 11/45 with Clo vs. 28/46 in the untreated group, P<0.01). Clo reduced the lung injury, the wet/dry ratio of lung, the accumulation of platelet and leukocyte in lung, the fall in platelet count, the WBC count, the numbers of activated platelets and platelet-leukocyte complexes in peripheral blood. It was concluded that Clo can play a protective role in decompression sickness through reducing post-decompression platelet activation and inflammatory process.


Tailoring subunit vaccine immunity with adjuvant combinations and delivery routes using the Middle East respiratory coronavirus (MERS-CoV) receptor-binding domain as an antigen.

  • Jiaming Lan‎ et al.
  • PloS one‎
  • 2014‎

The development of an effective vaccine is critical for prevention of a Middle East respiratory syndrome coronavirus (MERS-CoV) pandemic. Some studies have indicated the receptor-binding domain (RBD) protein of MERS-CoV spike (S) is a good candidate antigen for a MERS-CoV subunit vaccine. However, highly purified proteins are typically not inherently immunogenic. We hypothesised that humoral and cell-mediated immunity would be improved with a modification of the vaccination regimen. Therefore, the immunogenicity of a novel MERS-CoV RBD-based subunit vaccine was tested in mice using different adjuvant formulations and delivery routes. Different vaccination regimens were compared in BALB/c mice immunized 3 times intramuscularly (i.m.) with a vaccine containing 10 µg of recombinant MERS-CoV RBD in combination with either aluminium hydroxide (alum) alone, alum and polyriboinosinic acid (poly I:C) or alum and cysteine-phosphate-guanine (CpG) oligodeoxynucleotides (ODN). The immune responses of mice vaccinated with RBD, incomplete Freund's adjuvant (IFA) and CpG ODN by a subcutaneous (s.c.) route were also investigated. We evaluated the induction of RBD-specific humoral immunity (total IgG and neutralizing antibodies) and cellular immunity (ELISpot assay for IFN-γ spot-forming cells and splenocyte cytokine production). Our findings indicated that the combination of alum and CpG ODN optimized the development of RBD-specific humoral and cellular immunity following subunit vaccination. Interestingly, robust RBD-specific antibody and T-cell responses were induced in mice immunized with the rRBD protein in combination with IFA and CpG ODN, but low level of neutralizing antibodies were elicited. Our data suggest that murine immunity following subunit vaccination can be tailored using adjuvant combinations and delivery routes. The vaccination regimen used in this study is promising and could improve the protection offered by the MERS-CoV subunit vaccine by eliciting effective humoral and cellular immune responses.


Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.

  • Ya-Jian Zhang‎ et al.
  • PloS one‎
  • 2014‎

A spontaneous late-ripening mutant of 'Jincheng' (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening.


Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2.

  • Brett H Herzog‎ et al.
  • Nature‎
  • 2013‎

Circulating lymphocytes continuously enter lymph nodes for immune surveillance through specialized blood vessels named high endothelial venules, a process that increases markedly during immune responses. How high endothelial venules (HEVs) permit lymphocyte transmigration while maintaining vascular integrity is unknown. Here we report a role for the transmembrane O-glycoprotein podoplanin (PDPN, also known as gp38 and T1α) in maintaining HEV barrier function. Mice with postnatal deletion of Pdpn lost HEV integrity and exhibited spontaneous bleeding in mucosal lymph nodes, and bleeding in the draining peripheral lymph nodes after immunization. Blocking lymphocyte homing rescued bleeding, indicating that PDPN is required to protect the barrier function of HEVs during lymphocyte trafficking. Further analyses demonstrated that PDPN expressed on fibroblastic reticular cells, which surround HEVs, functions as an activating ligand for platelet C-type lectin-like receptor 2 (CLEC-2, also known as CLEC1B). Mice lacking fibroblastic reticular cell PDPN or platelet CLEC-2 exhibited significantly reduced levels of VE-cadherin (also known as CDH5), which is essential for overall vascular integrity, on HEVs. Infusion of wild-type platelets restored HEV integrity in Clec-2-deficient mice. Activation of CLEC-2 induced release of sphingosine-1-phosphate from platelets, which promoted expression of VE-cadherin on HEVs ex vivo. Furthermore, draining peripheral lymph nodes of immunized mice lacking sphingosine-1-phosphate had impaired HEV integrity similar to Pdpn- and Clec-2-deficient mice. These data demonstrate that local sphingosine-1-phosphate release after PDPN-CLEC-2-mediated platelet activation is critical for HEV integrity during immune responses.


Ginsenoside Rg3 improves cardiac mitochondrial population quality: mimetic exercise training.

  • Mengwei Sun‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Emerging evidence indicates exercise training could mediate mitochondrial quality control through the improvement of mitochondrial dynamics. Ginsenoside Rg3 (Rg3), one of the active ingredients in Panax ginseng, is well known in herbal medicine as a tonic and restorative agent. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. In the present study, we compared the effects of Rg3 administration with aerobic exercise on mitochondrial adaptation in cardiac muscle tissue of Sprague-Dawley (SD) rats. Three groups of SD rats were studied: (1) sedentary control, (2) Rg3-treated and (3) aerobic exercise trained. Both aerobic exercise training and Rg3 supplementation enhanced peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and nuclear factor-E2-related factor 2 (Nrf2) protein levels in cardiac muscle. The activation of PGC-1α led to increased mRNA levels of mitochondrial transcription factor A (Tfam) and nuclear related factor 1(Nrf1), these changes were accompanied by increases in mitochondrial DNA copy number and complex protein levels, while activation of Nrf2 increased levels of phase II detoxifying enzymes, including nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1(NQO1), superoxide dismutase (MnSOD) and catalase. Aerobic exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein 7 (ATG7), these effects of aerobic exercise are comparable to that of Rg3. These results demonstrate that Rg3 mimics improved cardiac adaptations to exercise by regulating mitochondria dynamic remodeling and enhancing the quantity and quality of mitochondria.


Molecular mechanisms underlying the rapid arrhythmogenic action of bisphenol A in female rat hearts.

  • Xiaoqian Gao‎ et al.
  • Endocrinology‎
  • 2013‎

Previously we showed that bisphenol A (BPA), an environmental estrogenic endocrine disruptor, rapidly altered Ca(2+) handling and promoted arrhythmias in female rat hearts. The underlying molecular mechanism was not known. Here we examined the cardiac-specific signaling mechanism mediating the rapid impact of low-dose BPA in female rat ventricular myocytes. We showed that protein kinase A (PKA) and Ca(2+)/CaM-dependent protein kinase II (CAMKII) signaling pathways are the two major pathways activated by BPA. Exposure to 1 nM BPA rapidly increased production of cAMP and rapidly but transiently increased the phosphorylation of the ryanodine receptors by PKA but not by CAMKII. BPA also rapidly increased the phosphorylation of phospholamban (PLN), a key regulator protein of sarcoplasmic reticulum Ca(2+) reuptake, by CAMKII but not PKA. The increase in CAMKII phosphorylation of PLN was mediated by phospholipase C and inositol trisphosphate receptor-mediated Ca(2+) release, likely from the endoplasmic reticulum Ca(2+) storage. These two pathways are likely localized, impacting only their respective target proteins. The rapid impacts of BPA on ryanodine receptors and PLN phosphorylation were mediated by estrogen receptor-β but not estrogen receptor-α. BPA's rapid signaling in cardiac myocytes did not involve activation of ERK1/2. Functional analysis showed that PKA but not CAMKII activation contributed to BPA-induced sarcoplasmic reticulum Ca(2+) leak, and both PKA and CAMKII were necessary contributors to the stimulatory effect of BPA on arrhythmogenesis. These results provide mechanistic insight into BPA's rapid proarrhythmic actions in female cardiac myocytes and contribute to the assessment of the consequence and potential cardiac toxicity of BPA exposure.


Identification and genetic effect of haplotype in the bovine BMP7 gene.

  • Yong-Zhen Huang‎ et al.
  • Gene‎
  • 2013‎

Bone morphogenetic proteins (BMPs) are peptide growth factors belonging to the transforming growth factor-beta (TGF-β) superfamily, and some members of the BMP family support white adipocyte differentiation. In this study, we focused on the BMP7 which singularly promotes the differentiation of brown preadipocytes. Haplotypes involving 5 single nucleotide polymorphism (SNP) sites in the bovine BMP7 gene were identified and their effect on body weight was analyzed. 16 haplotypes and 18 combined haplotypes were revealed and the linkage disequilibrium was assessed in the cattle population with 602 individuals representing three main cattle breeds from China. The results showed that haplotypes 3, 10 and 14 were predominant and accounted for 75.64%, 69.85%, and 83.36% in Nanyang, Qinchuan and Jiaxian cattle breeds, respectively. The statistical analyses indicated that the SNP 1, 4, and 5 are associated with the body weight, body length, and heart girth at 12 and 24 months in Nanyang cattle population (P<0.05), whereas there is no significant association between their 16 haplotypes and 18 combined haplotypes. Our results provide evidence that some SNPs and haplotypes in BMP7 are associated with growth traits, and may be utilized as a genetic marker in marker-assisted selection for beef cattle breeding programs.


MicroRNA-124-3p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1.

  • Xianglai Xu‎ et al.
  • Journal of translational medicine‎
  • 2013‎

Increasing evidence has suggested that dysregulation of certain microRNAs (miRNAs) may contribute to human disease including carcinogenesis and tumor metastasis in human. miR-124-3p is down-regulated in various cancers, and modulates proliferation and aggressiveness of cancer cells. However, the roles of miR-124-3p in human bladder cancer are elusive. Thus, this study was conducted to investigate the biological functions and its molecular mechanisms of miR-124-3p in human bladder cancer cell lines, discussing whether it has a potential to be a therapeutic biomarker of bladder cancer.


Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons.

  • Hong Chen‎ et al.
  • Cell stem cell‎
  • 2014‎

Amyotrophic lateral sclerosis (ALS) presents motoneuron (MN)-selective protein inclusions and axonal degeneration but the underlying mechanisms of such are unknown. Using induced pluripotent cells (iPSCs) from patients with mutation in the Cu/Zn superoxide dismutase (SOD1) gene, we show that spinal MNs, but rarely non-MNs, exhibited neurofilament (NF) aggregation followed by neurite degeneration when glia were not present. These changes were associated with decreased stability of NF-L mRNA and binding of its 3' UTR by mutant SOD1 and thus altered protein proportion of NF subunits. Such MN-selective changes were mimicked by expression of a single copy of the mutant SOD1 in human embryonic stem cells and were prevented by genetic correction of the SOD1 mutation in patient's iPSCs. Importantly, conditional expression of NF-L in the SOD1 iPSC-derived MNs corrected the NF subunit proportion, mitigating NF aggregation and neurite degeneration. Thus, NF misregulation underlies mutant SOD1-mediated NF aggregation and axonal degeneration in ALS MNs.


Genomic insights into the serine protease gene family and expression profile analysis in the planthopper, Nilaparvata lugens.

  • Yan-Yuan Bao‎ et al.
  • BMC genomics‎
  • 2014‎

The brown planthopper (Nilaparvata lugens) is one of the most destructive rice plant pests in Asia. N. lugens causes extensive damage to rice by sucking rice phloem sap, which results in hopper burn (complete death of the rice plants). Despite its importance, little is known about the digestion, development and defense mechanisms of this hemimetabolous insect pest. In this study, we aim to identify the serine protease (SP) and serine protease homolog (SPH) genes, which form a large family in eukaryotes, due to the potential for multiple physiological roles. Having a fully sequenced genome for N. lugens allows us to perform in-depth analysis of the gene structures, reveal the evolutionary relationships and predict the physiological functions of SP genes.


Detection of copy number variations and their effects in Chinese bulls.

  • Liangzhi Zhang‎ et al.
  • BMC genomics‎
  • 2014‎

Copy number variations (CNVs) are a main source of genomic structural variations underlying animal evolution and production traits. Here, with one pure-blooded Angus bull as reference, we describe a genome-wide analysis of CNVs based on comparative genomic hybridization arrays in 29 Chinese domesticated bulls and examined their effects on gene expression and cattle growth traits.


Carpatamides A-C, cytotoxic arylamine derivatives from a marine-derived Streptomyces sp.

  • Peng Fu‎ et al.
  • Journal of natural products‎
  • 2014‎

Three new acylated arylamine derivatives (1-3), carpatamides A-C, were isolated from a marine-derived Streptomyces sp. based on activity screening against non-small-cell lung cancer (NSCLC). The structures of 1-3 were established on the basis of comprehensive spectroscopic analyses and chemical methods. Compounds 1 and 3 showed moderate cytotoxicity against NSCLC cell lines HCC366, A549, and HCC44 with IC50 values ranging from 2.2 to 8.4 μM.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: