Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 649 papers

Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components.

  • Hetan Chang‎ et al.
  • Scientific reports‎
  • 2016‎

Male moths efficiently recognize conspecific sex pheromones thanks to their highly accurate and specific olfactory system. The Heliothis/Helicoverpa species are regarded as good models for studying the perception of sex pheromones. In this study, we performed a series of experiments to investigate the peripheral mechanisms of pheromone coding in two-closely related species, Helicoverpa armigera and H. assulta. The morphology and distribution patterns of sensilla trichoidea are similar between the two species when observed at the scanning electron microscope, but their performances are different. In H. armigera, three functional types of sensilla trichoidea (A, B and C) were found to respond to different pheromone components, while in H. assulta only two types of such sensilla (A and C) could be detected. The response profiles of all types of sensilla trichoidea in the two species well matched the specificities of the pheromone receptors (PRs) expressed in the same sensilla, as measured in voltage-clamp experiments. The expressions of PRs in neighboring olfactory sensory neurons (OSNs) within the same trichoid sensillum were further confirmed by in situ hybridization. Our results show how the same pheromone components can code for different messages at the periphery of two Helicoverpa species.


Emergence of a Potent Multidrug Efflux Pump Variant That Enhances Campylobacter Resistance to Multiple Antibiotics.

  • Hong Yao‎ et al.
  • mBio‎
  • 2016‎

Bacterial antibiotic efflux pumps are key players in antibiotic resistance. Although their role in conferring multidrug resistance is well documented, the emergence of "super" efflux pump variants that enhance bacterial resistance to multiple drugs has not been reported. Here, we describe the emergence of a resistance-enhancing variant (named RE-CmeABC) of the predominant efflux pump CmeABC in Campylobacter, a major zoonotic pathogen whose resistance to antibiotics is considered a serious antibiotic resistance threat in the United States. Compared to the previously characterized CmeABC transporters, RE-CmeABC is much more potent in conferring Campylobacter resistance to antibiotics, which was shown by increased MICs and reduced intracellular accumulation of antibiotics. Structural modeling suggests that sequence variations in the drug-binding pocket of CmeB possibly contribute to the enhanced efflux function. Additionally, RE-CmeABC expands the mutant selection window of ciprofloxacin, enhances the emergence of antibiotic-resistant mutants, and confers exceedingly high-level resistance to fluoroquinolones, an important class of antibiotics for clinical therapy of campylobacteriosis. Furthermore, RE-CmeABC is horizontally transferable, shifts antibiotic MIC distribution among clinical isolates, and is increasingly prevalent in Campylobacter jejuni isolates, suggesting that it confers a fitness advantage under antimicrobial selection. These findings reveal a new mechanism for enhanced multidrug resistance and an effective strategy utilized by bacteria for adaptation to selection from multiple antibiotics.


Low expression of miR-381 is a favorite prognosis factor and enhances the chemosensitivity of osteosarcoma.

  • Yunchao Li‎ et al.
  • Oncotarget‎
  • 2016‎

Osteosarcoma (OS) is the most common primary bone malignancy with a poor prognosis for all races and both sexes. In this study, we found that miR-381 is a positive prognosis factor for OS patients that OS patients with a low expression of miR-381 had a longer survival time after surgical intervention, and miR-381 expression promotes MG-63 cell proliferation and cell invasion ability. Our results also showed a strong negative correlation between the expression of miR-381 and LRRC4 (brain relative specific expression gene) in OS tissues. This demonstrated that LRRC4 is a direct target gene of miR-381, and suppressing the expression of miR-381 increases the sensitivity of OS cells to chemotherapeutic drugs through the LRRC4-mediated mTOR pathway. In summary, miR-381 is an important biomarker in directing therapeutic intervention and predicting prognosis in OS patients.


Comparison of research methods for functional characterization of insect olfactory receptors.

  • Bing Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Insect olfactory receptors (ORs) in the peripheral olfactory system play an important role detecting elements of information from the environment. At present, various approaches are used for deorphanizing of ORs in insect. In this study, we compared methods for functional analysis of ORs in vitro and in vivo taking the candidate pheromone receptor OR13 of Helicoverpa assulta (HassOR13) as the object of our experiments. We found that the natural system was more sensitive than those utilizing transgenic Drosophila. The two-electrode voltage-clamp recording is more suitable for functional screening of large numbers of ORs, while the in vivo transgenic Drosophila system could prove more accurate to further validate the function of a specific OR. We also found that, among the different solvents used to dissolve pheromones and odorants, hexane offered good reproducibility and high sensitivity. Finally, the function of ORs was indirectly confirmed in transgenic Drosophila, showing that odor-activation of ORs-expressing olfactory receptor neurons (ORNs) can mediate behavioral choices. In summary, our results compare advantages and drawbacks of different approaches, thus helping in the choice of the method most suitable, in each specific situation, for deorphanizing insect ORs.


Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase.

  • Shuangxi Li‎ et al.
  • PLoS biology‎
  • 2016‎

Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR)-family protein Smoothened (Smo). Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish)/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II) in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail). We find that CL-II phosphorylation is promoted by protein kinase A (PKA)-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh) pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo.


MiR-138-5p promotes TNF-α-induced apoptosis in human intervertebral disc degeneration by targeting SIRT1 through PTEN/PI3K/Akt signaling.

  • Bing Wang‎ et al.
  • Experimental cell research‎
  • 2016‎

The role of apoptosis in the pathogenesis of intervertebral disc degeneration (IDD) remains enigmatic. Accumulating evidence has shown that the apoptotic machinery is regulated by miRNAs. The aim of this study was to evaluate the effect of miR-138-5p on apoptosis in human NP cells induced by TNF-α and to explore the mechanism of this process. The expression of miR-138-5p was determined in nucleus pulposus (NP) tissues from patients with IDD and controls using RT-qPCR, and we showed that miR-138-5p was significantly upregulated in degenerative NP tissues. Additionally, TNF-α-induced apoptosis was inhibited when using a miR-138-5p inhibitor in human NP cells, and silencing of miR-138-5p dramatically suppressed the expression of cleaved caspase-3. Moreover, bioinformatics target prediction identified SIRT1 as a putative target of miR-138-5p. Knockdown of miR-138-5p was shown to upregulate SIRT1 expression by direct targeting its 3'-UTR, an effect that was abolished by mutation of the miR-138-5p binding sites. Furthermore, inhibition of miR-138-5p downregulated PTEN protein expression and promoted activation of PI3K/AKT, and knockdown of either SIRT1 or the PI3K/Akt inhibitor (LY294002) abolished the effect of miR-138-5p on NP cell apoptosis. Together, these results indicate that miR-138-5p is a novel regulator of human NP cell apoptosis induced by TNF-α. The knockout of miR-138-5p expression protected human NP cells from apoptosis via the upregulation of SIRT1, which was possibly mediated via PTEN/PI3K/Akt signaling. These findings suggest that the miR-138-5p/SIRT1/PTEN/PI3K/Akt signaling pathway might represent a novel therapeutic target for the prevention of IDD.


Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model.

  • Jian-Hong Shi‎ et al.
  • FEBS open bio‎
  • 2016‎

Y-box-binding protein 1 (YB1) is a multifunctional transcription factor with vital roles in proliferation, differentiation and apoptosis. In this study, we have examined the role of its C-terminal domain (YB1 CTD) in proliferation, angiogenesis and tumorigenicity in breast cancer. Breast cancer cell line SK-BR-3 was infected with GFP-tagged YB1 CTD adenovirus expression vector. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) proliferation assay showed that YB1 CTD decreased SK-BR-3 cell proliferation, and down-regulated cyclin B1 and up-regulated p21 levels in SK-BR-3 cells. YB1 CTD overexpression changed the cytoskeletal organization and slightly inhibited the migration of SK-BR-3 cells. YB1 CTD also inhibited secreted VEGF expression in SK-BR-3 cells, which decreased SK-BR-3-induced EA.hy926 endothelial cell angiogenesis in vitro. YB1 CTD overexpression attenuated the ability of SK-BR-3 cells to form tumours in nude mice, and decreased in vivo VEGF levels and angiogenesis in the xenografts in SK-BR-3 tumour-bearing mice. Taken together, our findings demonstrate the vital role of YB1 CTD overexpression in inhibiting proliferation, angiogenesis and tumorigenicity of breast cancer cell line SK-BR-3.


Yin-Chen-Hao-Tang alleviates biliary obstructive cirrhosis in rats by inhibiting biliary epithelial cell proliferation and activation.

  • Bing Wang‎ et al.
  • Pharmacognosy magazine‎
  • 2015‎

Yin-Chen-Hao-Tang (YCHT) consists of three aqueous extracts from Artemisia capillaris, Gardenia sp., and prepared Rheum rhabarbarum (rhubarb) (3:2:1). YCHT is characterized by its anti-inflammatory properties in liver regulation and relief of jaundice. We aimed to study the effects and mechanisms of action of YCHT on biliary obstructive cirrhosis.


Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls.

  • Zezhang Zhu‎ et al.
  • Nature communications‎
  • 2015‎

Adolescent idiopathic scoliosis (AIS) is a structural deformity of the spine affecting millions of children. As a complex disease, the genetic aetiology of AIS remains obscure. Here we report the results of a four-stage genome-wide association study (GWAS) conducted in a sample of 4,317 AIS patients and 6,016 controls. Overall, we identify three new susceptibility loci at 1p36.32 near AJAP1 (rs241215, Pcombined=2.95 × 10(-9)), 2q36.1 between PAX3 and EPHA4 (rs13398147, Pcombined=7.59 × 10(-13)) and 18q21.33 near BCL-2 (rs4940576, Pcombined=2.22 × 10(-12)). In addition, we refine a previously reported region associated with AIS at 10q24.32 (rs678741, Pcombined=9.68 × 10(-37)), which suggests LBX1AS1, encoding an antisense transcript of LBX1, might be a functional variant of AIS. This is the first GWAS investigating genetic variants associated with AIS in Chinese population, and the findings provide new insight into the multiple aetiological mechanisms of AIS.


In vivo experiments reveal the good, the bad and the ugly faces of sFlt-1 in pregnancy.

  • Gabor Szalai‎ et al.
  • PloS one‎
  • 2014‎

Soluble fms-like tyrosine kinase (sFlt)-1-e15a, a primate-specific sFlt-1-isoform most abundant in the human placenta in preeclampsia, can induce preeclampsia in mice. This study compared the effects of full-length human (h)sFlt-1-e15a with those of truncated mouse (m)sFlt-1(1-3) used in previous preeclampsia studies on pregnancy outcome and clinical symptoms in preeclampsia.


Isoquercetin Improves Hepatic Lipid Accumulation by Activating AMPK Pathway and Suppressing TGF-β Signaling on an HFD-Induced Nonalcoholic Fatty Liver Disease Rat Model.

  • Guohong Qin‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Isoquercetin (IQ), a glucoside derivative of quercetin, has been reported to have beneficial effects in nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the potential improvement of IQ in liver lipid accumulation, inflammation, oxidative condition, and activation in Kupffer cells (KCs) on a high-fat diet (HFD) induced NAFLD models. Male Sprague-Dawley (SD) rats were induced by HFD, lipopolysaccharides/free fatty acids (LPS/FFA) induced co-culture cells model between primary hepatocytes and Kupffer cells was used to test the effects and the underlying mechanism of IQ. Molecular docking was performed to predict the potential target of IQ. Significant effects of IQ were found on reduced lipid accumulation, inflammation, and oxidative stress. In addition, AMP-activated protein kinase (AMPK) pathway was activated by IQ, and is plays an important role in lipid regulation. Meanwhile, IQ reversed the increase of activated KCs which caused by lipid overload, and also suppression of Transforming growth factor beta (TGF-β) signaling by TGF-β Recptor-1 and SMAD2/3 signaling. Finally, TGF-βR1 and TGF-βR2 were both found may involve in the mechanism of IQ. IQ can improve hepatic lipid accumulation and decrease inflammation and oxidative stress by its activating AMPK pathway and suppressing TGF-β signaling to alleviate NAFLD.


Hypoxia destroys the microstructure of microtubules and causes dysfunction of endothelial cells via the PI3K/Stathmin1 pathway.

  • Huaming Cao‎ et al.
  • Cell & bioscience‎
  • 2019‎

Endothelial cells (EC) are sensitive to changes in the microenvironment, including hypoxia and ischemia. Disruption of the microtubular network has been reported in cases of ischemia. However, the signaling pathways involved in hypoxia-induced microtubular disruption are unknown. The purpose of this study was to investigate the molecular mechanisms involved in hypoxia-induced microtubular disassembly in human umbilical vein endothelial cells (HUVECs).


Construction and analysis of a spinal cord injury competitive endogenous RNA network based on the expression data of long noncoding, micro‑ and messenger RNAs.

  • Linbang Wang‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Spinal cord injury (SCI) results from trauma and predominantly affects the young male population. SCI imposes major and permanent life changes, and is associated with high future mortality and disability rates. Long non-coding RNAs (lncRNAs) have recently been demonstrated to serve critical roles in a broad range of biological processes and to be expressed in various diseases, including in SCI. However, the precise mechanisms underlying the roles of lncRNAs in SCI pathogenesis remain unexplored. In the present study, the aim was to identify critical differentially expressed lncRNAs in SCI based on the competing endogenous RNA (ceRNA) hypothesis by mining data from the Gene Expression Omnibus database of the National Center for Biotechnology Information and to unveil the functions of these lncRNAs. Different approaches and tools were employed to establish a network consisting of 13 lncRNA, 93 messenger RNA and 9 microRNA nodes, with a total of 202 edges. Three node lncRNAs were identified based on the degree distribution of the nodes, and their corresponding subnetworks were subsequently constructed. Based on these subnetworks, the biological pathways and interactions of these 3 lncRNAs were detailed using FunRich software (version 3.0). The primary results of the 3 lncRNA enrichment analyses were that they were associated with autophagy, extracellular communication and transcription factor networks, respectively. The phosphoinositide 3‑kinase/protein kinase B/mammalian target of rapamycin signaling pathway of XR_350851 was the classic autophagy pathway, indicating that XR_350851 may regulate autophagy in SCI. The possible role of XR_350851 in SCI revealed in the current study based on the regulatory mechanism of ceRNAs has uncovered a new repertoire of molecular factors with potential as novel biomarkers and therapeutic targets in SCI.


Aromatic Modification of Low Molecular Weight PEI for Enhanced Gene Delivery.

  • Qing-Ying Yu‎ et al.
  • Polymers‎
  • 2017‎

Low molecular weight polyethylenimine (1800 Da, also referred to as oligoethylenimines, OEI) was modified with amino acids, including two aromatic amino acids (tryptophan, phenylalanine) and an aliphatic amino acid (leucine). The substitution degree of amino acids could be controlled by adjusting the feeding mole ratio of the reactants. Fluorescence spectroscopy and circular dichroism experiments demonstrated that the indole ring of tryptophan may intercalate into the DNA base pairs and contribute to efficient DNA condensation. In vitro gene expression results revealed that the modified OEIs (OEI-AAs) may provide higher transfection efficiency even than high molecular weight polyethylenimine (25 kDa, PEI), especially the aromatic tryptophan substituted OEI. Moreover, OEI-AAs exhibited excellent serum tolerance, and up to 137 times higher transfection efficiency than PEI 25 kDa that was obtained in the presence of serum. The cytotoxicity of OEI-AAs is much lower than PEI 25 kDa. This study may afford a new method for the development of low molecular weight oligomeric non-viral gene vectors with both high efficiency and biocompatibility.


Investigation of the dynamical expression of Nostoc flagelliforme proteome in response to rehydration.

  • Bing Wang‎ et al.
  • Journal of proteomics‎
  • 2019‎

To adapt to xeric environments, microorganisms have evolved with the capability of the superior desiccation tolerance and rapid resuscitation after rehydration. Nostoc flagelliforme, a representative terrestrial cyanobacterium that is distributed in west and west-northern parts of China, serves as an ideal model for gaining insight in the physiological recovery mechanism. In this study, LC-MS/MS combined with isobaric chemical labeling technique (iTRAQ) was used to quantify dynamic changes of proteins in N. flagelliforme during the rehydration processes. Approximately 113 proteins were identified to be differentially expressed, with function mainly related to photosynthesis, defense response, biosynthesis, antioxidant system, and energy and carbohydrate metabolism. Among them, protective proteins including high light inducible proteins and antioxidants showed a down regulation trend during the rehydration process, while proteins involved in photosynthesis, biosynthesis and signaling pathways and regulation of gene expression tend to be up-regulated. These results might shed light on molecular mechanism for the N.flagelliforme response to hydration. SIGNIFICANCE: In this work, iTRAQ-based proteome expression profiling provides a holistic proteomic insight for N. flagelliforme in response to rehydration processes. Proteins involved in defense system could help to limit the damage to a repairable level and maintain cellular physiological integrity in the dried state. In addition, results in this work suggest that changes in expression of light-harvesting complexes phycobilisome is closely related to the switch of photosynthesis apparatus, while only a few proteins in PSI and PSII present significant expression change, which may indicate the integrity of PSI and PSII photosynthetic system.


Functional characterization of four sex pheromone receptors in the newly discovered maize pest Athetis lepigone.

  • Ya-Nan Zhang‎ et al.
  • Journal of insect physiology‎
  • 2019‎

Chemoreception systems play a crucial role in regulating key behavioral activities of insects, such as mating, oviposition, and foraging. Odorant receptors (ORs) trigger the transduction of chemical signals into electric signals, and are involved in the corresponding responses associated with odorant guidance behaviors. Pheromone receptors (PRs) of male adult insects are generally thought to function in the recognition of female sex pheromones, and are also important molecular targets for the development of behavioral inhibitors and insecticides. In this study, we successfully expressed and functionally analyzed four AlepPRs of Athetis lepigone in Xenopus oocytes using the two-electrode voltage-clamp method. The results demonstrated that AlepOR3 responded exclusively to the sex pheromone compound of A. lepigone, (Z)-7-dodecenyl acetate (Z7-12:Ac) (EC50 = 8.830 × 10-6 M), while AlepOR4 responded to all five compounds [(Z7-12:Ac, (Z)-8-dodecenyl acetate (Z8-12:Ac), (Z)-9-tetradecenyl acetate (Z9-14:Ac), (Z,E)-9,11-tetradecadienyl acetate (Z9,E11-14:Ac), and (Z,E)-9,12-tetradecadienyl acetate (Z9,E12-14:Ac)] and had a higher response to Z9-14:Ac (EC50 = 2.243 × 10-5 M) than to Z7-12:Ac. However, AlepOR6 displayed a significantly higher response to a non-pheromone of A. lepigone, Z9,E12-14:Ac (EC50 = 7.145 × 10-6 M), than to the other four compounds. AlepOR5 displayed no responses to any of the pheromone compounds of A. lepigone, but responded exclusively to (Z)-11-hexadecenyl acetate (Z11-16:Ac) (EC50 = 7.870 × 10-6 M), a sex pheromone compound of other Noctuidae species. These findings can help explore the molecular mechanisms of sex pheromone recognition in A. lepigone and other moths, and develop broad-spectrum behavioral inhibitors and insecticides against different maize moths in future.


Chemical Profile and Anti-inflammatory Activity of Total Flavonoids from Glycyrrhiza Uralensis Fisch.

  • Lei Yin‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2018‎

Glycyrrhiza uralensis Fisch. (G. uralensis) is one of the most widely used herbal medicines. This study was designed to enrich total flavonoids (TFF) from G. uralensis. The chemical profile of TFF was identified by HPLC and colorimetric assay. The TFF mainly contained liquiritin apioside, liquiritin, isoliquiritin apioside, liquiritigenin and isoliquiritigenin without glycyrrhizic acid. To study the anti-inflammatory activity of TFF, the DMB-induced ear vasodilatation assay and carrageenan-induced rat paw edema model have been utilized. Treatment with TFF showed significant anti-inflammatory activities in the two models. The two in-vivo edema assays demonstrated that the TFF possesses significant dose-dependent anti-inflammatory activity, similar to that of indomethacin at a dose of 500 mg/kg. In rat paws with carrageenan, treatment with TFF (500 and 250 mg/kg) markedly inhibited the expression of IL-1β and iNOS. TFF at all doses noticeably decreased levels of NO and MDA at the site of inflammation, while only i.g. TFF at a dose of 500 mg/kg significantly decreased TNF-α levels in the carrageenan-injected paws. In addition, an increase in SOD activity was induced by TFF at all doses. These results revealed that TFF exhibited significant anti-inflammatory activity in acute inflammatory models.


Therapeutic Effects of a Novel Phenylphthalimide Analog for Corneal Neovascularization and Retinal Vascular Leakage.

  • Bing Wang‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2018‎

Neovascularization (NV) and retinal vascular leakage are major causes of impaired vision in ocular diseases. The purpose of this study was to identify novel phenylphthalimide analogs with therapeutic effects on NV and vascular leakage and to explore the mechanism of action.


Optimization of parameters for femoral component implantation during TKA using finite element analysis and orthogonal array testing.

  • Zhifang Mou‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2018‎

Individualized and accurate implantation of a femoral component during total knee arthroplasty (TKA) is essential in achieving equal distribution of intra-articular stress and long-term survival of the prosthesis. However, individualized component implantation remains challenging. This study aimed to optimize and individualize the positioning parameters of a femoral component in order to facilitate its accurate implantation.


14-3-3 Proteins Reduce Cell-to-Cell Transfer and Propagation of Pathogenic α-Synuclein.

  • Bing Wang‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

α-Synuclein (αsyn) is the key protein that forms neuronal aggregates in the neurodegenerative disorders Parkinson's disease (PD) and dementia with Lewy bodies. Recent evidence points to the prion-like spread of αsyn from one brain region to another. Propagation of αsyn is likely dependent on release, uptake, and misfolding. Under normal circumstances, this highly expressed brain protein functions normally without promoting pathology, yet the underlying endogenous mechanisms that prevent αsyn spread are not understood. 14-3-3 proteins are highly expressed brain proteins that have chaperone function and regulate protein trafficking. In this study, we investigated the potential role of the 14-3-3 proteins in the regulation of αsyn spread using two models of αsyn spread. In a paracrine αsyn model, 14-3-3θ promoted release of αsyn complexed with 14-3-3θ. Despite higher amounts of released αsyn, extracellular αsyn showed reduced oligomerization and seeding capability, reduced internalization, and reduced toxicity in primary mixed-gender mouse neurons. 14-3-3 inhibition reduced the amount of αsyn released, yet released αsyn was more toxic and demonstrated increased oligomerization, seeding capability, and internalization. In the preformed fibril model, 14-3-3 θ reduced αsyn aggregation and neuronal death, whereas 14-3-3 inhibition enhanced αsyn aggregation and neuronal death in primary mouse neurons. 14-3-3s blocked αsyn spread to distal chamber neurons not exposed directly to fibrils in multichamber, microfluidic devices. These findings point to 14-3-3s as a direct regulator of αsyn propagation, and suggest that dysfunction of 14-3-3 function may promote αsyn pathology in PD and related synucleinopathies.SIGNIFICANCE STATEMENT Transfer of misfolded aggregates of α-synuclein from one brain region to another is implicated in the pathogenesis of Parkinson's disease and other synucleinopathies. This process is dependent on active release, internalization, and misfolding of α-synuclein. 14-3-3 proteins are highly expressed chaperone proteins that interact with α-synuclein and regulate protein trafficking. We used two different models in which toxicity is associated with cell-to-cell transfer of α-synuclein to test whether 14-3-3s impact α-synuclein toxicity. We demonstrate that 14-3-3θ reduces α-synuclein transfer and toxicity by inhibiting oligomerization, seeding capability, and internalization of α-synuclein, whereas 14-3-3 inhibition accelerates the transfer and toxicity of α-synuclein in these models. Dysfunction of 14-3-3 function may be a critical mechanism by which α-synuclein propagation occurs in disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: