Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Effects of human umbilical cord-derived mesenchymal stem cells on hematologic malignancies.

  • Qian Li‎ et al.
  • Oncology letters‎
  • 2018‎

Mesenchymal stem cells (MSCs) have been used in hematopoietic stem cell transplantation for years. However, the safety of MSCs applied in various types of hematologic malignancy has not been comprehensively explored. In the present study, the effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on six representative hematologic malignancy cell lines were explored, including leukemia, multiple myeloma and lymphoma cells. Direct and indirect co-culture models were established, and cell proliferation was assessed by carboxyfluorescein diacetate succinimidyl ester staining. A cytometric bead array cytokine kit was used to quantify cytokines. The expression of interleukin (IL)-6 receptor elements on tumor cells was detected by reverse transcription-polymerase chain reaction and flow cytometry, and the effects of exogenous IL-6 on cell proliferation were determined using a Cell Counting kit-8 assay. The results demonstrated that hUC-MSCs inhibited the proliferation of most of the cell lines examined (THP-1, HL-60, K562 and RPMI-8226), but promoted the proliferation of Raji cells. In addition, hUC-MSCs secreted abundant IL-6, promoted the secretion of IL-10 by RPMI-8226 and Raji cells, and inhibited the secretion of tumor necrosis factor-α by THP-1 cells. These data indicate a varied effect of hUC-MSCs on various types of hematologic malignancy, including distinct mechanisms of cell-to-cell contact and cytokines. Researchers applying hUC-MSCs in lymphoma should be aware of a potential tumor growth-promoting effect.


miR-30d inhibits cell biological progression of Ewing's sarcoma by suppressing the MEK/ERK and PI3K/Akt pathways in vitro.

  • Conglin Ye‎ et al.
  • Oncology letters‎
  • 2018‎

MicroRNAs (miRNAs) are small, single-stranded, non-coding RNA molecules involved in cancer initiation and progression. The present study aimed to determine the effect of miRNA-30d (miR-30d) on the growth, malignant phenotype, and apoptosis of Ewing's sarcoma (ES) SK-ES-1 cells, and to elucidate the underlying molecular mechanism and signaling pathway involved. Cell proliferation, invasion, migration, morphological changes, cell cycle distribution and apoptosis were investigated. Furthermore, the expression of matrix metalloproteinase (MMP)-2, MMP-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3 and poly (ADP-ribose) polymerase (PARP) were examined, as was the activity of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. It was found that the overexpression of miR-30d repressed the proliferation, migration and invasion, and promoted morphological changes, S-phase arrest and apoptosis of SK-ES-1 cells. Additionally, it was observed that increased miR-30d levels inhibited the expression of MMP-2 and MMP-9, and inhibited the activity of the MEK/ERK and PI3K/Akt pathways, but elevated the ratio of Bax/Bcl-2 and the cleavage of caspase-3 and PARP. Taken together, the results demonstrated that miR-30d suppressed the biological progression of SK-ES-1 cells by targeting MMP-2 and MMP9, the Bax/Bcl-2 and caspase-3 cascade, and the MEK/ERK and PI3K/Akt signaling pathways. Therefore, miR-30d is a promising target in the treatment of ES. However, further investigations are urgently required to investigate the underlying molecular mechanisms of the effects of miR-30d on ES for a comprehensive understanding of the tumorigenesis and progression of this cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: