Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Genetic polymorphisms of long non-coding RNA GAS5 predict platinum-based concurrent chemoradiotherapy response in nasopharyngeal carcinoma patients.

  • Zhen Guo‎ et al.
  • Oncotarget‎
  • 2017‎

LncRNA GAS5 plays a tumor suppressive role in a variety of human cancers and promises to be a novel diagnostic biomarker, therapy target, as well as prognostic biomarker. However, the role of GAS5 in nasopharyngeal carcinoma (NPC) remains elusive. The objective of the present study was to evaluate the effect of single nucleotide polymorphisms (SNPs) in GAS5 on treatment efficacy and toxicity in NPC patients receiving chemoradiotherapy. Three potentially functional SNPs of GAS5 were genotyped in 267 NPC patients and validated in another 238 NPC patients treated with chemoradiotherapy from southern China. Multivariate logistic regression analyses and stratification analyses were used to estimate the association of candidate SNPs and chemoradiotherapy efficacy and toxic reactions. Our results showed that rs2067079 kept a consistent association with severe myelosuppression and severe neutropenia in discovery set (OR=2.403, P=0.009; OR=2.454, P=0.015; respectively), validation set (OR=3.653, P=0.027; OR=4.767, P=0.016; respectively), and combined dataset (OR=1.880, P=0.007; OR=2.079, P=0.005; respectively). rs2067079 CT genotype carriers presented an even more remarkable increased risk of severe myelosuppression (OR=3.878, P=0.003) and severe neutropenia (OR=3.794, P=0.009) in subgroups taking paclitaxel+platinum as concurrent chemoradiotherapy regimen. Besides, we found a gene-does effect of rs6790, with the incidence rate of severe myelosuppression decreased from 23.56% to 17.21% to 10% and the incidence rate of severe neutropenia decreased from 30.4% to 20.9% to 17.1% for rs6790 GG vs GA vs AA genotype carriers. Our results indicate the potential role of lncRNA GAS5 polymorphisms rs2067079 and rs6790 as predictive biomarkers for chemoradiotherapy induced toxic reactions in NPC patients.


FOXP3 inhibits cancer stem cell self-renewal via transcriptional repression of COX2 in colorectal cancer cells.

  • Shuo Liu‎ et al.
  • Oncotarget‎
  • 2017‎

Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: