Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis.

  • Mario Schelhaas‎ et al.
  • PLoS pathogens‎
  • 2012‎

Infectious endocytosis of incoming human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer, is poorly characterized in terms of cellular requirements and pathways. Conflicting reports attribute HPV-16 entry to clathrin-dependent and -independent mechanisms. To comprehensively describe the cell biological features of HPV-16 entry into human epithelial cells, we compared HPV-16 pseudovirion (PsV) infection in the context of cell perturbations (drug inhibition, siRNA silencing, overexpression of dominant mutants) to five other viruses (influenza A virus, Semliki Forest virus, simian virus 40, vesicular stomatitis virus, and vaccinia virus) with defined endocytic requirements. Our analysis included infection data, i.e. GFP expression after plasmid delivery by HPV-16 PsV, and endocytosis assays in combination with electron, immunofluorescence, and video microscopy. The results indicated that HPV-16 entry into HeLa and HaCaT cells was clathrin-, caveolin-, cholesterol- and dynamin-independent. The virus made use of a potentially novel ligand-induced endocytic pathway related to macropinocytosis. This pathway was distinct from classical macropinocytosis in regards to vesicle size, cholesterol-sensitivity, and GTPase requirements, but similar in respect to the need for tyrosine kinase signaling, actin dynamics, Na⁺/H⁺ exchangers, PAK-1 and PKC. After internalization the virus was transported to late endosomes and/or endolysosomes, and activated through exposure to low pH.


Bacterial infection of Smad3/Rag2 double-null mice with transforming growth factor-beta dysregulation as a model for studying inflammation-associated colon cancer.

  • Lillian Maggio-Price‎ et al.
  • The American journal of pathology‎
  • 2009‎

Alterations in genes encoding transforming growth factor-beta-signaling components contribute to colon cancer in humans. Similarly, mice deficient in the transforming growth factor-beta signaling molecule, Smad3, develop colon cancer, but only after a bacterial trigger occurs, resulting in chronic inflammation. To determine whether Smad3-null lymphocytes contribute to increased cancer susceptibility, we crossed Smad3-null mice with mice deficient in both B and T lymphocytes (Rag2(-/-) mice). Helicobacter-infected Smad3/Rag2-double knockout (DKO) mice had more diffuse inflammation and increased incidence of adenocarcinoma compared with Helicobacter-infected Smad3(-/-) or Rag2(-/-) mice alone. Adoptive transfer of WT CD4(+)CD25(+) T-regulatory cells provided significant protection of Smad3/Rag2-DKO from bacterial-induced typhlocolitis, dysplasia, and tumor development, whereas Smad3(-/-) T-regulatory cells provided no protection. Immunohistochemistry, real-time reverse transcriptase-polymerase chain reaction, and Western blot analyses of colonic tissues from Smad3/Rag2-DKO mice 1 week after Helicobacter infection revealed an influx of macrophages, enhanced nuclear factor-kappaB activation, increased Bcl(XL)/Bcl-2 expression, increased c-Myc expression, accentuated epithelial cell proliferation, and up-regulated IFN-gamma, IL-1alpha, TNF-alpha, IL-1beta, and IL-6 transcription levels. These results suggest that the loss of Smad3 increases susceptibility to colon cancer by at least two mechanisms: deficient T-regulatory cell function, which leads to excessive inflammation after a bacterial trigger; and increased expression of proinflammatory cytokines, enhanced nuclear factor-kappaB activation, and increased expression of both pro-oncogenic and anti-apoptotic proteins that result in increased cell proliferation/survival of epithelial cells in colonic tissues.


Histone deacetylase inhibitor treatment induces 'BRCAness' and synergistic lethality with PARP inhibitor and cisplatin against human triple negative breast cancer cells.

  • Kyungsoo Ha‎ et al.
  • Oncotarget‎
  • 2014‎

There is an unmet need to develop new, more effective and safe therapies for the aggressive forms of triple negative breast cancers (TNBCs). While up to 20% of women under 50 years of age with TNBC harbor germline mutations in BRCA1, and these tumors are sensitive to treatment with poly(ADP) ribose polymerase inhibitors, a majority of TNBCs lack BRCA1 mutations or loss of expression. Findings presented here demonstrate that by attenuating the levels of DNA damage response and homologous recombination proteins, pan-histone deacetylase inhibitor (HDI) treatment induces 'BRCAness' and sensitizes TNBC cells lacking BRCA1 to lethal effects of PARP inhibitor or cisplatin. Treatment with HDI also induced hyperacetylation of nuclear hsp90. Similar effects were observed following shRNA-mediated depletion of HDAC3, confirming its role as the deacetylase for nuclear HSP90. Furthermore, cotreatment with HDI and ABT-888 induced significantly more DNA strand breaks than either agent alone, and synergistically induced apoptosis of TNBC cells. Notably, co-treatment with HDI and ABT-888 significantly reduced in vivo tumor growth and markedly improved the survival of mice bearing TNBC cell xenografts. These findings support the rationale to interrogate the clinical activity of this novel combination against human TNBC, irrespective of its expression of mutant BRCA1.


Increased Susceptibility to Skin Carcinogenesis Associated with a Spontaneous Mouse Mutation in the Palmitoyl Transferase Zdhhc13 Gene.

  • Carlos J Perez‎ et al.
  • The Journal of investigative dermatology‎
  • 2015‎

Here we describe a spontaneous mutation in the Zdhhc13 (zinc finger, DHHC domain containing 13) gene (also called Hip14l), one of 24 genes encoding palmitoyl acyltransferase (PAT) enzymes in the mouse. This mutation (Zdhhc13luc) was identified as a nonsense base substitution, which results in a premature stop codon that generates a truncated form of the ZDHHC13 protein, representing a potential loss-of-function allele. Homozygous Zdhhc13luc/Zdhhc13luc mice developed generalized hypotrichosis, associated with abnormal hair cycle, epidermal and sebaceous gland hyperplasia, hyperkeratosis, and increased epidermal thickness. Increased keratinocyte proliferation and accelerated transit from basal to more differentiated layers were observed in mutant compared with wild-type (WT) epidermis in untreated skin and after short-term 12-O-tetradecanoyl-phorbol-13-acetate treatment and acute UVB exposure. Interestingly, this epidermal phenotype was associated with constitutive activation of NF-κB (RelA) and increased neutrophil recruitment and elastase activity. Furthermore, tumor multiplicity and malignant progression of papillomas after chemical skin carcinogenesis were significantly higher in mutant mice than WT littermates. To our knowledge, this is the first report of a protective role for PAT in skin carcinogenesis.


C3G/Rapgef1 Is Required in Multipolar Neurons for the Transition to a Bipolar Morphology during Cortical Development.

  • Bhavin Shah‎ et al.
  • PloS one‎
  • 2016‎

The establishment of a polarized morphology is essential for the development and function of neurons. During the development of the mammalian neocortex, neurons arise in the ventricular zone (VZ) from radial glia cells (RGCs) and leave the VZ to generate the cortical plate (CP). During their migration, newborn neurons first assume a multipolar morphology in the subventricular zone (SVZ) and lower intermediate zone (IZ). Subsequently, they undergo a multi-to-bipolar (MTB) transition to become bipolar in the upper IZ by developing a leading process and a trailing axon. The small GTPases Rap1A and Rap1B act as master regulators of neural cell polarity in the developing mouse neocortex. They are required for maintaining the polarity of RGCs and directing the MTB transition of multipolar neurons. Here we show that the Rap1 guanine nucleotide exchange factor (GEF) C3G (encoded by the Rapgef1 gene) is a crucial regulator of the MTB transition in vivo by conditionally inactivating the Rapgef1 gene in the developing mouse cortex at different time points during neuronal development. Inactivation of C3G results in defects in neuronal migration, axon formation and cortical lamination. Live cell imaging shows that C3G is required in cortical neurons for both the specification of an axon and the initiation of radial migration by forming a leading process.


Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis.

  • Cynthia R Willis‎ et al.
  • Journal of inflammation (London, England)‎
  • 2012‎

Interleukin-7 (IL-7) acts primarily on T cells to promote their differentiation, survival, and homeostasis. Under disease conditions, IL-7 mediates inflammation through several mechanisms and cell types. In humans, IL-7 and its receptor (IL-7R) are increased in diseases characterized by inflammation such as atherosclerosis, rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel disease. In mice, overexpression of IL-7 results in chronic colitis, and T-cell adoptive transfer studies suggest that memory T cells expressing high amounts of IL-7R drive colitis and are maintained and expanded with IL-7. The studies presented here were undertaken to better understand the contribution of IL-7R in inflammatory bowel disease in which colitis was induced with a bacterial trigger rather than with adoptive transfer.


Endothelial PlexinD1 signaling instructs spinal cord vascularization and motor neuron development.

  • José Ricardo Vieira‎ et al.
  • Neuron‎
  • 2022‎

How the vascular and neural compartment cooperate to achieve such a complex and highly specialized structure as the central nervous system is still unclear. Here, we reveal a crosstalk between motor neurons (MNs) and endothelial cells (ECs), necessary for the coordinated development of MNs. By analyzing cell-to-cell interaction profiles of the mouse developing spinal cord, we uncovered semaphorin 3C (Sema3C) and PlexinD1 as a communication axis between MNs and ECs. Using cell-specific knockout mice and in vitro assays, we demonstrate that removal of Sema3C in MNs, or its receptor PlexinD1 in ECs, results in premature and aberrant vascularization of MN columns. Those vascular defects impair MN axon exit from the spinal cord. Impaired PlexinD1 signaling in ECs also causes MN maturation defects at later stages. This study highlights the importance of a timely and spatially controlled communication between MNs and ECs for proper spinal cord development.


Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy.

  • Nicholas L Reyes‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.


UDP-glucose 4, 6-dehydratase activity plays an important role in maintaining cell wall integrity and virulence of Candida albicans.

  • Manimala Sen‎ et al.
  • PLoS pathogens‎
  • 2011‎

Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFNγ and TNFα levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.


Disruption of Fnip1 reveals a metabolic checkpoint controlling B lymphocyte development.

  • Heon Park‎ et al.
  • Immunity‎
  • 2012‎

The coordination of nutrient and energy availability with cell growth and division is essential for proper immune cell development and function. By using a chemical mutagenesis strategy in mice, we identified a pedigree that has a complete block in B cell development at the pre-B cell stage resulting from a deletion in the Fnip1 gene. Enforced expression of an immunoglobulin transgene failed to rescue B cell development. Whereas essential pre-B cell signaling molecules were activated normally in Fnip1-null pre-B cells, the metabolic regulators AMPK and mTOR were dysregulated, resulting in excessive cell growth and enhanced sensitivity to apoptosis in response to metabolic stress (pre-B cell receptor crosslinking, oncogene activation). These results indicate that Folliculin-interacting protein 1 (Fnip1) is vital for B cell development and metabolic homeostasis and reveal a metabolic checkpoint that may ensure that pre-B cells have sufficient metabolic capacity to support division, while limiting lymphomagenesis caused by deregulated growth.


Loss of Fnip1 alters kidney developmental transcriptional program and synergizes with TSC1 loss to promote mTORC1 activation and renal cyst formation.

  • Ryan Centini‎ et al.
  • PloS one‎
  • 2018‎

Birt-Hogg-Dube' Syndrome (BHDS) is a rare genetic disorder in humans characterized by skin hamartomas, lung cysts, pneumothorax, and increased risk of renal tumors. BHDS is caused by mutations in the BHD gene, which encodes for Folliculin, a cytoplasmic adapter protein that binds to Folliculin interacting proteins-1 and -2 (Fnip1, Fnip2) as well as the master energy sensor AMP kinase (AMPK). Whereas kidney-specific deletion of the Bhd gene in mice is known to result in polycystic kidney disease (PKD) and renal cell carcinoma, the roles of Fnip1 in renal cell development and function are unclear. In this study, we utilized mice with constitutive deletion of the Fnip1 gene to show that the loss of Fnip1 is sufficient to result in renal cyst formation, which was characterized by decreased AMPK activation, increased mTOR activation, and metabolic hyperactivation. Using RNAseq, we found that Fnip1 disruption resulted in many cellular and molecular changes previously implicated in the development of PKD in humans, including alterations in the expression of ion and amino acid transporters, increased cell adhesion, and increased inflammation. Loss of Fnip1 synergized with Tsc1 loss to hyperactivate mTOR, increase Erk activation, and greatly accelerate the development of PKD. Our results collectively define roles for Fnip1 in regulating kidney development and function, and provide a model for how loss of Fnip1 contributes to PKD and perhaps renal cell carcinoma.


Myc stimulates B lymphocyte differentiation and amplifies calcium signaling.

  • Tania Habib‎ et al.
  • The Journal of cell biology‎
  • 2007‎

Deregulated expression of the Myc family of transcription factors (c-, N-, and L-myc) contributes to the development of many cancers by a mechanism believed to involve the stimulation of cell proliferation and inhibition of differentiation. However, using B cell-specific c-/N-myc double-knockout mice and E(mu)-myc transgenic mice bred onto genetic backgrounds (recombinase-activating gene 2-/- and Btk-/- Tec-/-) whereby B cell development is arrested, we show that Myc is necessary to stimulate both proliferation and differentiation in primary B cells. Moreover, Myc expression results in sustained increases in intracellular Ca2+ ([Ca2+]i), which is required for Myc to stimulate B cell proliferation and differentiation. The increase in [Ca2+]i correlates with constitutive nuclear factor of activated T cells (NFAT) nuclear translocation, reduced Ca2+ efflux, and decreased expression of the plasma membrane Ca2+-adenosine triphosphatase (PMCA) efflux pump. Our findings demonstrate a revised model whereby Myc promotes both proliferation and differentiation, in part by a remarkable mechanism whereby Myc amplifies Ca2+ signals, thereby enabling the concurrent expression of Myc- and Ca2+-regulated target genes.


Reciprocal Interaction between Vascular Filopodia and Neural Stem Cells Shapes Neurogenesis in the Ventral Telencephalon.

  • Barbara Di Marco‎ et al.
  • Cell reports‎
  • 2020‎

Angiogenesis and neurogenesis are tightly coupled during embryonic brain development. However, little is known about how these two processes interact. We show that nascent blood vessels actively contact dividing neural stem cells by endothelial filopodia in the ventricular zone (VZ) of the murine ventral telencephalon; this association is conserved in the human ventral VZ. Using mouse mutants with altered vascular filopodia density, we show that this interaction leads to prolonged cell cycle of apical neural progenitors (ANPs) and favors early neuronal differentiation. Interestingly, pharmacological experiments reveal that ANPs induce vascular filopodia formation by upregulating vascular endothelial growth factor (VEGF)-A in a cell-cycle-dependent manner. This mutual relationship between vascular filopodia and ANPs works as a self-regulatory system that senses ANP proliferation rates and rapidly adjusts neuronal production levels. Our findings indicate a function of vascular filopodia in fine-tuning neural stem cell behavior, which is the basis for proper brain development.


Distinct mechanisms of B and T lymphocyte accumulation generate tumor-draining lymph node hypertrophy.

  • Lauren M Habenicht‎ et al.
  • Oncoimmunology‎
  • 2016‎

Tumor-draining lymph nodes (TDLNs) often enlarge in human cancer patients and in murine tumor models, due to lymphocyte accumulation and lymphatic sinus growth. B lymphocytes within TDLNs can drive lymph node hypertrophy in response to tumor growth, however little is known about the mechanisms directing the preferential accumulation of B lymphocytes relative to T cells in enlarging TDLNs. To define why B and T lymphocytes accumulate in TDLNs, we quantified lymphocyte proliferation, apoptosis, entry, and exit in TDLNs versus contralateral non-TDLNs (NTDLNs) in a footpad B16-F10 melanoma mouse model. B and T lymphocyte proliferation and apoptosis were increased as the TDLNs enlarged, although relative rates were similar to those of NTDLNs. TDLN entry of B and T lymphocytes via high endothelial venules was also modestly increased in enlarged TDLNs. Strikingly, the egress of B cells was strongly reduced in TDLNs versus NTDLNs, while T cell egress was modestly decreased, indicating that regulation of lymphocyte exit from TDLNs is a major mechanism of preferential B lymphocyte accumulation. Surface sphingosine-1-phosphate receptor 1 (S1PR1) which binds S1P and signals lymphocyte egress, exhibited greater downregulation in B relative to T lymphocytes, consistent with preferential retention of B lymphocytes in TDLNs. TDLN lymphocytes did not activate surface CD69 expression, indicating a CD69-independent mechanism of downregulation of S1PR1. B and T cell trafficking via afferent lymphatics to enter TDLNs also increased, suggesting a pathway for accumulation of tumor-educated lymphocytes in TDLNs. These mechanisms regulating TDLN hypertrophy could provide new targets to manipulate lymphocyte responses to cancer.


Murine norovirus inhibits B cell development in the bone marrow of STAT1-deficient mice.

  • Charlie C Hsu‎ et al.
  • Virology‎
  • 2018‎

Noroviruses are a leading cause of gastroenteritis in humans and it was recently revealed that noroviruses can infect B cells. We demonstrate that murine norovirus (MNV) infection can significantly impair B cell development in the bone marrow in a signal transducer and activator of transcription 1 (STAT1) dependent, but interferon signaling independent manner. We also show that MNV replication is more pronounced in the absence of STAT1 in ex vivo cultured B cells. Interestingly, using bone marrow transplantation studies, we found that impaired B cell development requires Stat1-/- hematopoietic cells and Stat1-/- stromal cells, and that the presence of wild-type hematopoietic or stromal cells was sufficient to restore normal development of Stat1-/- B cells. These results suggest that B cells normally restrain norovirus replication in a cell autonomous manner, and that wild-type STAT1 is required to protect B cell development during infection.


B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis.

  • Alanna Ruddell‎ et al.
  • The American journal of pathology‎
  • 2003‎

Expression of the c-myc proto-oncogene is deregulated in many human cancers. We examined the role of c-Myc in stimulating angiogenesis and lymphangiogenesis in a highly metastatic murine model of Burkitt's lymphoma (E micro -c-myc), where c-Myc is expressed exclusively in B lymphocytes. Immunohistochemical analysis of bone marrow and lymph nodes from young (preneoplastic) E micro -c-myc transgenic mice revealed increased growth of blood vessels, which are functional by dye flow assay. Lymphatic sinuses also increased in size and number within the lymph nodes, as demonstrated by immunostaining for with a lymphatic endothelial marker 10.1.1. The 10.1.1 antibody recognizes VEGFR-2- and VEGFR-3-positive lymphatic sinuses and vessels within lymph nodes, and also recognizes lymphatic vessels in other tissues. Subcutaneously injected dye traveled more efficiently through draining lymph nodes in E micro -c-myc mice, indicating that these hypertrophic lymphatic sinuses increase lymph flow. Purified B lymphocytes and lymphoid tissues from E micro -c-myc mice expressed increased levels of vascular endothelial growth factor (VEGF) by immunohistochemical or immunoblot assays, which could promote blood and lymphatic vessel growth through interaction with VEGFR-2, which is expressed on the endothelium of both vessel types. These results indicate that constitutive c-Myc expression stimulates angiogenesis and lymphangiogenesis, which may promote the rapid growth and metastasis of c-Myc-expressing cancer cells, respectively.


A functional genomics predictive network model identifies regulators of inflammatory bowel disease.

  • Lauren A Peters‎ et al.
  • Nature genetics‎
  • 2017‎

A major challenge in inflammatory bowel disease (IBD) is the integration of diverse IBD data sets to construct predictive models of IBD. We present a predictive model of the immune component of IBD that informs causal relationships among loci previously linked to IBD through genome-wide association studies (GWAS) using functional and regulatory annotations that relate to the cells, tissues, and pathophysiology of IBD. Our model consists of individual networks constructed using molecular data generated from intestinal samples isolated from three populations of patients with IBD at different stages of disease. We performed key driver analysis to identify genes predicted to modulate network regulatory states associated with IBD, prioritizing and prospectively validating 12 of the top key drivers experimentally. This validated key driver set not only introduces new regulators of processes central to IBD but also provides the integrated circuits of genetic, molecular, and clinical traits that can be directly queried to interrogate and refine the regulatory framework defining IBD.


A point mutation in the murine Hem1 gene reveals an essential role for Hematopoietic protein 1 in lymphopoiesis and innate immunity.

  • Heon Park‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

Hem1 (Hematopoietic protein 1) is a hematopoietic cell-specific member of the Hem family of cytoplasmic adaptor proteins. Orthologues of Hem1 in Dictyostelium discoideum, Drosophila melanogaster, and Caenorhabditis elegans are essential for cytoskeletal reorganization, embryonic cell migration, and morphogenesis. However, the in vivo functions of mammalian Hem1 are not known. Using a chemical mutagenesis strategy in mice to identify novel genes involved in immune cell functions, we positionally cloned a nonsense mutation in the Hem1 gene. Hem1 deficiency results in defective F-actin polymerization and actin capping in lymphocytes and neutrophils caused by loss of the Rac-controlled actin-regulatory WAVE protein complex. T cell development is disrupted in Hem1-deficient mice at the CD4(-)CD8(-) (double negative) to CD4(+)CD8(+) (double positive) cell stages, whereas T cell activation and adhesion are impaired. Hem1-deficient neutrophils fail to migrate in response to chemotactic agents and are deficient in their ability to phagocytose bacteria. Remarkably, some Rac-dependent functions, such as Th1 differentiation and nuclear factor kappaB (NF-kappaB)-dependent transcription of proinflammatory cytokines proceed normally in Hem1-deficient mice, whereas the production of Th17 cells are enhanced. These results demonstrate that Hem1 is essential for hematopoietic cell development, function, and homeostasis by controlling a distinct pathway leading to cytoskeletal reorganization, whereas NF-kappaB-dependent transcription proceeds independently of Hem1 and F-actin polymerization.


Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis.

  • Maria I Harrell‎ et al.
  • The American journal of pathology‎
  • 2007‎

Lymphangiogenesis is associated with human and murine cancer metastasis, suggesting that lymphatic vessels are important for tumor dissemination. Lymphatic vessel alterations were examined using B16-F10 melanoma cells implanted in syngeneic C57Bl/6 mice, which form tumors metastasizing to draining lymph nodes and subsequently to the lungs. Footpad tumors showed no lymphatic or blood vessel growth; however, the tumor-draining popliteal lymph node featured greatly increased lymphatic sinuses. Lymph node lymphangiogenesis began before melanoma cells reached draining lymph nodes, indicating that primary tumors induce these alterations at a distance. Lymph flow imaging revealed that nanoparticle transit was greatly increased through tumor-draining relative to nondraining lymph nodes. Lymph node lymphatic sinuses and lymph flow were increased in mice implanted with unmarked or with foreign antigen-expressing melanomas, indicating that these effects are not due to foreign antigen expression. However, tumor-derived immune signaling could promote lymph node alterations, as macrophages infiltrated footpad tumors, whereas lymphocytes accumulated in tumor-draining lymph nodes. B lymphocytes are required for lymphangiogenesis and increased lymph flow through tumor-draining lymph nodes, as these alterations were not observed in mice deficient for B cells. Lymph node lymphangiogenesis and increased lymph flow through tumor-draining lymph nodes may actively promote metastasis via the lymphatics.


Interleukin 25 promotes the initiation of proallergic type 2 responses.

  • Pornpimon Angkasekwinai‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

The molecular mechanisms underlying the initiation of innate and adaptive proallergic type 2 responses are not understood. Interleukin (IL) 25, a member of the IL-17 cytokine family, was recently reported (Owyang, A.M., C. Zaph, E.H. Wilson, K.J. Guild, T. McClanahan, H.R. Miller, D.J. Cua, M. Goldschmidt, C.A. Hunter, R.A. Kastelein, and D. Artis. 2006. J. Exp. Med. 203:843-849; Fallon, P.G., S.J. Ballantyne, N.E. Mangan, J.L. Barlow, A. Dasvarma, D.R. Hewett, A. McIlgorm, H.E. Jolin, and A.N. McKenzie. 2006. J. Exp. Med. 203:1105-1116) to be important in Th2 cell-mediated immunity to parasitic infection. However, the cellular source and targets of IL-25 are not well understood. We show that mouse IL-25 is expressed by lung epithelial cells as a result of innate immune responses to allergens. Transgenic overexpression of IL-25 by these cells leads to mucus production and airway infiltration of macrophages and eosinophils, whereas blockade of IL-25 conversely reduces the airway inflammation and Th2 cytokine production in an allergen-induced asthma model. In addition, IL-25, with a receptor more highly expressed in Th2 than other effector T cells, promotes Th2 cell differentiation in an IL-4- and signal transducer and activator of transcription 6-dependent manner. During early T cell activation, IL-25 potentiates expression of the nuclear factor of activated T cells c1 and JunB transcription factors, which possibly results in increased levels of initial IL-4 production, up-regulation of GATA-3 expression, and enhanced Th2 cell differentiation. Thus, IL-25 is a critical factor regulating the initiation of innate and adaptive proallergic responses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: