Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 80 papers

A novel immunodominant CD8+ T cell response restricted by a common HLA-C allele targets a conserved region of Gag HIV-1 clade CRF01_AE infected Thais.

  • Supranee Buranapraditkun‎ et al.
  • PloS one‎
  • 2011‎

CD8+ T cell responses play an important role in the control of HIV-1. The extensive sequence diversity of HIV-1 represents a critical hurdle to developing an effective HIV-1 vaccine, and it is likely that regional-specific vaccine strains will be required to overcome the diversity of the different HIV-1 clades distributed world-wide. Unfortunately, little is known about the CD8+ T cell responses against CRF01_AE, which is responsible for the majority of infections in Southeast Asia.


Defining the HLA class I-associated viral antigen repertoire from HIV-1-infected human cells.

  • Nicola Ternette‎ et al.
  • European journal of immunology‎
  • 2016‎

Recognition and eradication of infected cells by cytotoxic T lymphocytes is a key defense mechanism against intracellular pathogens. High-throughput definition of HLA class I-associated immunopeptidomes by mass spectrometry is an increasingly important analytical tool to advance our understanding of the induction of T-cell responses against pathogens such as HIV-1. We utilized a liquid chromatography tandem mass spectrometry workflow including de novo-assisted database searching to define the HLA class I-associated immunopeptidome of HIV-1-infected human cells. We here report for the first time the identification of 75 HIV-1-derived peptides bound to HLA class I complexes that were purified directly from HIV-1-infected human primary CD4(+) T cells and the C8166 human T-cell line. Importantly, one-third of eluted HIV-1 peptides had not been previously known to be presented by HLA class I. Over 82% of the identified sequences originated from viral protein regions for which T-cell responses have previously been reported but for which the precise HLA class I-binding sequences have not yet been defined. These results validate and expand the current knowledge of virus-specific antigenic peptide presentation during HIV-1 infection and provide novel targets for T-cell vaccine development.


Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes.

  • Dionysios C Watson‎ et al.
  • Journal of extracellular vesicles‎
  • 2018‎

The development of extracellular vesicles (EV) for therapeutic applications is contingent upon the establishment of reproducible, scalable, and high-throughput methods for the production and purification of clinical grade EV. Methods including ultracentrifugation (U/C), ultrafiltration, immunoprecipitation, and size-exclusion chromatography (SEC) have been employed to isolate EV, each facing limitations such as efficiency, particle purity, lengthy processing time, and/or sample volume. We developed a cGMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving bioreactor culture, tangential flow filtration (TFF), and preparative SEC. We applied this purification method for the isolation of engineered EV carrying multiple complexes of a novel human immunostimulatory cytokine-fusion protein, heterodimeric IL-15 (hetIL-15)/lactadherin. HEK293 cells stably expressing the fusion cytokine were cultured in a hollow-fibre bioreactor. Conditioned medium was collected and EV were isolated comparing three procedures: U/C, SEC, or TFF + SEC. SEC demonstrated comparable particle recovery, size distribution, and hetIL-15 density as U/C purification. Relative to U/C, SEC preparations achieved a 100-fold reduction in ferritin concentration, a major protein-complex contaminant. Comparative proteomics suggested that SEC additionally decreased the abundance of cytoplasmic proteins not associated with EV. Combination of TFF and SEC allowed for bulk processing of large starting volumes, and resulted in bioactive EV, without significant loss in particle yield or changes in size, morphology, and hetIL-15/lactadherin density. Taken together, the combination of bioreactor culture with TFF + SEC comprises a scalable, efficient method for the production of highly purified, bioactive EV carrying hetIL-15/lactadherin, which may be useful in targeted cancer immunotherapy approaches.


Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques.

  • Viraj Kulkarni‎ et al.
  • PloS one‎
  • 2014‎

HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag) elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag) increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.


Virological and immunological outcome of treatment interruption in HIV-1-infected subjects vaccinated with MVA-B.

  • Miriam Rosás-Umbert‎ et al.
  • PloS one‎
  • 2017‎

The most relevant endpoint in therapeutic HIV vaccination is the assessment of time to viral rebound or duration of sustained control of low-level viremia upon cART treatment cessation. Structured treatment interruptions (STI) are however not without risk to the patient and reliable predictors of viral rebound/control after therapeutic HIV-1 vaccination are urgently needed to ensure patient safety and guide therapeutic vaccine development. Here, we integrated immunological and virological parameters together with viral rebound dynamics after STI in a phase I therapeutic vaccine trial of a polyvalent MVA-B vaccine candidate to define predictors of viral control. Clinical parameters, proviral DNA, host HLA genetics and measures of humoral and cellular immunity were evaluated. A sieve effect analysis was conducted comparing pre-treatment viral sequences to breakthrough viruses after STI. Our results show that a reduced proviral HIV-1 DNA at study entry was independently associated with two virological parameters, delayed HIV-1 RNA rebound (p = 0.029) and lower peak viremia after treatment cessation (p = 0.019). Reduced peak viremia was also positively correlated with a decreased number of HLA class I allele associated polymorphisms in Gag sequences in the rebounding virus population (p = 0.012). Our findings suggest that proviral DNA levels and the number of HLA-associated Gag polymorphisms may have an impact on the clinical outcome of STI. Incorporation of these parameters in future therapeutic vaccine trials may guide refined immunogen design and help conduct safer STI approaches.


Definition of the viral targets of protective HIV-1-specific T cell responses.

  • Beatriz Mothe‎ et al.
  • Journal of translational medicine‎
  • 2011‎

The efficacy of the CTL component of a future HIV-1 vaccine will depend on the induction of responses with the most potent antiviral activity and broad HLA class I restriction. However, current HIV vaccine designs are largely based on viral sequence alignments only, not incorporating experimental data on T cell function and specificity.


CTL responses of high functional avidity and broad variant cross-reactivity are associated with HIV control.

  • Beatriz Mothe‎ et al.
  • PloS one‎
  • 2012‎

Cytotoxic T lymphocyte (CTL) responses targeting specific HIV proteins, in particular Gag, have been associated with relative control of viral replication in vivo. However, Gag-specific CTL can also be detected in individuals who do not control the virus and it remains thus unclear how Gag-specific CTL may mediate the beneficial effects in some individuals but not in others. Here, we used a 10mer peptide set spanning HIV Gag-p24 to determine immunogen-specific T-cell responses and to assess functional properties including functional avidity and cross-reactivity in 25 HIV-1 controllers and 25 non-controllers without protective HLA class I alleles. Our data challenge the common belief that Gag-specific T cell responses dominate the virus-specific immunity exclusively in HIV-1 controllers as both groups mounted responses of comparable breadths and magnitudes against the p24 sequence. However, responses in controllers reacted to lower antigen concentrations and recognized more epitope variants than responses in non-controllers. These cross-sectional data, largely independent of particular HLA genetics and generated using direct ex-vivo samples thus identify T cell responses of high functional avidity and with broad variant reactivity as potential functional immune correlates of relative HIV control.


Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti- CD3 mAb T-cell expansion and "RecycleSpot".

  • Florian K Bihl‎ et al.
  • Journal of translational medicine‎
  • 2005‎

The assessment of cellular anti-viral immunity is often hampered by the limited availability of adequate samples, especially when attempting simultaneous, high-resolution determination of T cell responses against multiple viral infections. Thus, the development of assay systems, which optimize cell usage, while still allowing for the detailed determination of breadth and magnitude of virus-specific cytotoxic T lymphocyte (CTL) responses, is urgently needed. This study provides an up-to-date listing of currently known, well-defined viral CTL epitopes for HIV, EBV, CMV, HCV and HBV and describes an approach that overcomes some of the above limitations through the use of peptide matrices of optimally defined viral CTL epitopes in combination with anti-CD3 in vitro T cell expansion and re-use of cells from negative ELISpot wells. The data show that, when compared to direct ex vivo cell preparations, antigen-unspecific in vitro T cell expansion maintains the breadth of detectable T cell responses and demonstrates that harvesting cells from negative ELISpot wells for re-use in subsequent ELISpot assays (RecycleSpot), further maximized the use of available cells. Furthermore when combining T cell expansion and RecycleSpot with the use of rationally designed peptide matrices, antiviral immunity against more than 400 different CTL epitopes from five different viruses can be reproducibly assessed from samples of less than 10 milliliters of blood without compromising information on the breadth and magnitude of these responses. Together, these data support an approach that facilitates the assessment of cellular immunity against multiple viral co-infections in settings where sample availability is severely limited.


RTE and CTE mRNA export elements synergistically increase expression of unstable, Rev-dependent HIV and SIV mRNAs.

  • Sergey Smulevitch‎ et al.
  • Retrovirology‎
  • 2006‎

Studies of retroviral mRNA export identified two distinct RNA export elements utilizing conserved eukaryotic mRNA export mechanism(s), namely the Constitutive Transport Element (CTE) and the RNA Transport Element (RTE). Although RTE and CTE are potent in nucleocytoplasmic mRNA transport and expression, neither element is as powerful as the Rev-RRE posttranscriptional control. Here, we found that whereas CTE and the up-regulatory mutant RTEm26 alone increase expression from a subgenomic gag and env clones, the combination of these elements led to a several hundred-fold, synergistic increase. The use of the RTEm26-CTE combination is a simple way to increase expression of poorly expressed retroviral genes to levels otherwise only achieved via more cumbersome RNA optimization. The potent RTEm26-CTE element could be useful in lentiviral gene therapy vectors, DNA-based vaccine vectors, and gene transfer studies of other poorly expressed genes.


Priming with Recombinant BCG Expressing HTI Enhances the Magnitude and Breadth of the T-Cell Immune Responses Elicited by MVA.HTI in BALB/c Mice.

  • Narcís Saubi‎ et al.
  • Vaccines‎
  • 2020‎

The use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for HIV-1-specific T-cell induction. In this study, we used recombinant BCG expressing HIVACAT T-cell immunogen (HTI), BCG.HTI2auxo.int. BALB/c mice immunization with BCG.HTI2auxo.int prime and MVA.HTI boost was safe and induced HIV-1-specific T-cell responses. Two weeks after boost, T-cell responses were assessed by IFN-γ ELISpot. The highest total magnitude of IFN-γ spot-forming cells (SFC)/106 splenocytes was observed in BCG.HTI2auxo.int primed mice compared to mice receiving MVA.HTI alone or mice primed with BCGwt, although the differences between the vaccination regimens only reached trends. In order to evaluate the differences in the breadth of the T-cell immune responses, we examined the number of reactive peptide pools per mouse. Interestingly, both BCG.HTI2auxo.int and BCGwt primed mice recognized an average of four peptide pools per mouse. However, the variation was higher in BCG.HTI2auxo.int primed mice with one mouse recognizing 11 peptide pools and three mice recognizing few or no peptide pools. The recognition profile appeared to be more spread out for BCG.HTI2auxo.int primed mice and mice only receiving MVA.HTI. Here, we describe a useful vaccine platform for priming protective responses against HIV-1/TB and other prevalent infectious diseases.


Specificity of CD8+ T-Cell Responses Following Vaccination with Conserved Regions of HIV-1 in Nairobi, Kenya.

  • Yehia S Mohamed‎ et al.
  • Vaccines‎
  • 2020‎

Sub-Saharan Africa carries the biggest burden of the human immunodeficiency virus type 1 (HIV-1)/AIDS epidemic and is in an urgent need of an effective vaccine. CD8+ T cells are an important component of the host immune response to HIV-1 and may need to be harnessed if a vaccine is to be effective. CD8+ T cells recognize human leukocyte antigen (HLA)-associated viral epitopes and the HLA alleles vary significantly among different ethnic groups. It follows that definition of HIV-1-derived peptides recognized by CD8+ T cells in the geographically relevant regions will critically guide vaccine development. Here, we study fine details of CD8+ T-cell responses elicited in HIV-1/2-uninfected individuals in Nairobi, Kenya, who received a candidate vaccine delivering conserved regions of HIV-1 proteins called HIVconsv. Using 10-day cell lines established by in vitro peptide restimulation of cryopreserved PBMC and stably HLA-transfected 721.221/C1R cell lines, we confirm experimentally many already defined epitopes, for a number of epitopes we define the restricting HLA molecule(s) and describe four novel HLA-epitope pairs. We also identify specific dominance patterns, a promiscuous T-cell epitope and a rescue of suboptimal T-cell epitope induction in vivo by its functional variant, which all together inform vaccine design.


Epigenetic landscape in the kick-and-kill therapeutic vaccine BCN02 clinical trial is associated with antiretroviral treatment interruption (ATI) outcome.

  • Bruna Oriol-Tordera‎ et al.
  • EBioMedicine‎
  • 2022‎

The BCN02-trial combined therapeutic vaccination with a viral latency reversing agent (romidepsin, RMD) in HIV-1-infected individuals and included a monitored antiretroviral pause (MAP) as an efficacy read-out identifying individuals with an early or late (< or > 4weeks) viral-rebound. Integrated -omics analyses were applied prior treatment interruption to identify markers of virus control during MAP.


Plasma proteomic profiling identifies CD33 as a marker of HIV control in natural infection and after therapeutic vaccination.

  • Clara Duran-Castells‎ et al.
  • EBioMedicine‎
  • 2023‎

Biomarkers predicting the outcome of HIV-1 virus control in natural infection and after therapeutic interventions in HIV-1 cure trials remain poorly defined. The BCN02 trial (NCT02616874), combined a T-cell vaccine with romidepsin (RMD), a cancer-drug that was used to promote HIV-1 latency reversal and which has also been shown to have beneficial effects on neurofunction. We conducted longitudinal plasma proteomics analyses in trial participants to define biomarkers associated with virus control during monitored antiretroviral pause (MAP) and to identify novel therapeutic targets that can improve future cure strategies.


Mechanisms of Abrupt Loss of Virus Control in a Cohort of Previous HIV Controllers.

  • Miriam Rosás-Umbert‎ et al.
  • Journal of virology‎
  • 2019‎

Elite and viremic HIV controllers are able to control their HIV infection and maintain undetectable or low-level viremia in the absence of antiretroviral treatment. Despite extensive studies, the immune factors responsible for such exclusive control remain poorly defined. We identified a cohort of 14 HIV controllers that suffered an abrupt loss of HIV control (LoC) to investigate possible mechanisms and virological and immunological events related to the sudden loss of control. The in-depth analysis of these subjects involved the study of cell tropism of circulating virus, evidence for HIV superinfection, cellular immune responses to HIV, as well as an examination of viral adaptation to host immunity by Gag sequencing. Our data demonstrate that a poor capacity of T cells to mediate in vitro viral suppression, even in the context of protective HLA alleles, predicts a loss of viral control. In addition, the data suggest that inefficient viral control may be explained by an increase of CD8 T-cell activation and exhaustion before LoC. Furthermore, we detected a switch from C5- to X4-tropic viruses in 4 individuals after loss of control, suggesting that tropism shift might also contribute to disease progression in HIV controllers. The significantly reduced inhibition of in vitro viral replication and increased expression of activation and exhaustion markers preceding the abrupt loss of viral control may help identify untreated HIV controllers that are at risk of losing control and may offer a useful tool for monitoring individuals during treatment interruption phases in therapeutic vaccine trials.IMPORTANCE A few individuals can control HIV infection without the need for antiretroviral treatment and are referred to as HIV controllers. We have studied HIV controllers who suddenly lose this ability and present with high in vivo viral replication and decays in their CD4+ T-cell counts to identify potential immune and virological factors that were responsible for initial virus control. We identify in vitro-determined reductions in the ability of CD8 T cells to suppress viral control and the presence of PD-1-expressing CD8+ T cells with a naive immune phenotype as potential predictors of in vivo loss of virus control. The findings could be important for the clinical management of HIV controller individuals, and it may offer an important tool to anticipate viral rebound in individuals in clinical studies that include combination antiretroviral therapy (cART) treatment interruptions and which, if not treated quickly, could pose a significant risk to the trial participants.


A Phase I Randomized Therapeutic MVA-B Vaccination Improves the Magnitude and Quality of the T Cell Immune Responses in HIV-1-Infected Subjects on HAART.

  • Carmen Elena Gómez‎ et al.
  • PloS one‎
  • 2015‎

Previous studies suggested that poxvirus-based vaccines might be instrumental in the therapeutic HIV field. A phase I clinical trial was conducted in HIV-1-infected patients on highly active antiretroviral therapy (HAART), with CD4 T cell counts above 450 cells/mm3 and undetectable viremia. Thirty participants were randomized (2:1) to receive either 3 intramuscular injections of MVA-B vaccine (coding for clade B HIV-1 Env, Gag, Pol and Nef antigens) or placebo, followed by interruption of HAART.


A human immune data-informed vaccine concept elicits strong and broad T-cell specificities associated with HIV-1 control in mice and macaques.

  • Beatriz Mothe‎ et al.
  • Journal of translational medicine‎
  • 2015‎

None of the HIV T-cell vaccine candidates that have reached advanced clinical testing have been able to induce protective T cell immunity. A major reason for these failures may have been suboptimal T cell immunogen designs.


Comparative analysis of SIV-specific cellular immune responses induced by different vaccine platforms in rhesus macaques.

  • Antonio Valentin‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2014‎

To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.


Control of Heterologous Simian Immunodeficiency Virus SIVsmE660 Infection by DNA and Protein Coimmunization Regimens Combined with Different Toll-Like-Receptor-4-Based Adjuvants in Macaques.

  • Shakti Singh‎ et al.
  • Journal of virology‎
  • 2018‎

We developed a method of simultaneous vaccination with DNA and protein resulting in robust and durable cellular and humoral immune responses with efficient dissemination to mucosal sites and protection against simian immunodeficiency virus (SIV) infection. To further optimize the DNA-protein coimmunization regimen, we tested a SIVmac251-based vaccine formulated with either of two Toll-like receptor 4 (TLR4) ligand-based liposomal adjuvant formulations (TLR4 plus TLR7 [TLR4+7] or TLR4 plus QS21 [TLR4+QS21]) in macaques. Although both vaccines induced humoral responses of similar magnitudes, they differed in their functional quality, including broader neutralizing activity and effector functions in the TLR4+7 group. Upon repeated heterologous SIVsmE660 challenge, a trend of delayed viral acquisition was found in vaccinees compared to controls, which reached statistical significance in animals with the TRIM-5α-resistant (TRIM-5α R) allele. Vaccinees were preferentially infected by an SIVsmE660 transmitted/founder virus carrying neutralization-resistant A/K mutations at residues 45 and 47 in Env, demonstrating a strong vaccine-induced sieve effect. In addition, the delay in virus acquisition directly correlated with SIVsmE660-specific neutralizing antibodies. The presence of mucosal V1V2 IgG binding antibodies correlated with a significantly decreased risk of virus acquisition in both TRIM-5α R and TRIM-5α-moderate/sensitive (TRIM-5α M/S) animals, although this vaccine effect was more prominent in animals with the TRIM-5α R allele. These data support the combined contribution of immune responses and genetic background to vaccine efficacy. Humoral responses targeting V2 and SIV-specific T cell responses correlated with viremia control. In conclusion, the combination of DNA and gp120 Env protein vaccine regimens using two different adjuvants induced durable and potent cellular and humoral responses contributing to a lower risk of infection by heterologous SIV challenge.IMPORTANCE An effective AIDS vaccine continues to be of paramount importance for the control of the pandemic, and it has been proven to be an elusive target. Vaccine efficacy trials and macaque challenge studies indicate that protection may be the result of combinations of many parameters. We show that a combination of DNA and protein vaccinations applied at the same time provides rapid and robust cellular and humoral immune responses and evidence for a reduced risk of infection. Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5α) affects the effectiveness of the vaccine. These data are important for the design of better vaccines and may also affect other vaccine platforms.


The p40 subunit of interleukin (IL)-12 promotes stabilization and export of the p35 subunit: implications for improved IL-12 cytokine production.

  • Rashmi Jalah‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

IL-12 is a 70-kDa heterodimeric cytokine composed of the p35 and p40 subunits. To maximize cytokine production from plasmid DNA, molecular steps controlling IL-12p70 biosynthesis at the posttranscriptional and posttranslational levels were investigated. We show that the combination of RNA/codon-optimized gene sequences and fine-tuning of the relative expression levels of the two subunits within a cell resulted in increased production of the IL-12p70 heterodimer. We found that the p40 subunit plays a critical role in enhancing the stability, intracellular trafficking, and export of the p35 subunit. This posttranslational regulation mediated by the p40 subunit is conserved in mammals. Based on these findings, dual gene expression vectors were generated, producing an optimal ratio of the two subunits, resulting in a ~1 log increase in human, rhesus, and murine IL-12p70 production compared with vectors expressing the wild type sequences. Such optimized DNA plasmids also produced significantly higher levels of systemic bioactive IL-12 upon in vivo DNA delivery in mice compared with plasmids expressing the wild type sequences. A single therapeutic injection of an optimized murine IL-12 DNA plasmid showed significantly more potent control of tumor development in the B16 melanoma cancer model in mice. Therefore, the improved IL-12p70 DNA vectors have promising potential for in vivo use as molecular vaccine adjuvants and in cancer immunotherapy.


Low-replicating viruses and strong anti-viral immune response associated with prolonged disease control in a superinfected HIV-1 LTNP elite controller.

  • María Pernas‎ et al.
  • PloS one‎
  • 2012‎

To study the causes for the lack of clinical progression in a superinfected HIV-1 LTNP elite controller patient.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: