Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Sphingosine kinase 1 is required for TGF-β mediated fibroblastto- myofibroblast differentiation in ovarian cancer.

  • Jessica A Beach‎ et al.
  • Oncotarget‎
  • 2016‎

Sphingosine kinase 1 (SPHK1), the enzyme that produces sphingosine 1 phosphate (S1P), is known to be highly expressed in many cancers. However, the role of SPHK1 in cells of the tumor stroma remains unclear. Here, we show that SPHK1 is highly expressed in the tumor stroma of high-grade serous ovarian cancer (HGSC), and is required for the differentiation and tumor promoting function of cancer-associated fibroblasts (CAFs). Knockout or pharmacological inhibition of SPHK1 in ovarian fibroblasts attenuated TGF-β-induced expression of CAF markers, and reduced their ability to promote ovarian cancer cell migration and invasion in a coculture system. Mechanistically, we determined that SPHK1 mediates TGF-β signaling via the transactivation of S1P receptors (S1PR2 and S1PR3), leading to p38 MAPK phosphorylation. The importance of stromal SPHK1 in tumorigenesis was confirmed in vivo, by demonstrating a significant reduction of tumor growth and metastasis in SPHK1 knockout mice. Collectively, these findings demonstrate the potential of SPHK1 inhibition as a novel stroma-targeted therapy in HGSC.


FOXC2 augments tumor propagation and metastasis in osteosarcoma.

  • Maricel C Gozo‎ et al.
  • Oncotarget‎
  • 2016‎

Osteosarcoma is a highly malignant tumor that contains a small subpopulation of tumor-propagating cells (also known as tumor-initiating cells) characterized by drug resistance and high metastatic potential. The molecular mechanism by which tumor-propagating cells promote tumor growth is poorly understood. Here, we report that the transcription factor forkhead box C2 (FOXC2) is frequently expressed in human osteosarcomas and is important in maintaining osteosarcoma cells in a stem-like state. In osteosarcoma cell lines, we show that anoikis conditions stimulate FOXC2 expression. Downregulation of FOXC2 decreases anchorage-independent growth and invasion in vitro and lung metastasis in vivo, while overexpression of FOXC2 increases tumor propagation in vivo. In osteosarcoma cell lines, we demonstrate that high levels of FOXC2 are associated with and required for the expression of osteosarcoma tumor-propagating cell markers. In FOXC2 knockdown cell lines, we show that CXCR4, a downstream target of FOXC2, can restore osteosarcoma cell invasiveness and metastasis to the lung.


Metformin induces distinct bioenergetic and metabolic profiles in sensitive versus resistant high grade serous ovarian cancer and normal fallopian tube secretory epithelial cells.

  • Melissa Hodeib‎ et al.
  • Oncotarget‎
  • 2018‎

Metformin is a widely used agent for the treatment of diabetes and infertility, however, it has been found to have anti-cancer effects in a variety of malignancies including high grade serous ovarian cancer (HGSC). Studies describing the mechanisms by which metformin affects HGSC are ongoing, but detailed analysis of its effect on the cellular metabolism of both HGSC cells and their precursor, normal fallopian tube secretory epithelial cells (FTSECs), is lacking. We addressed the effects of metformin and the more potent biguanide, phenformin, on HGSC cell lines and normal immortalized FTSECs. Cell proliferation assays identified that FTSECs and a subset of HGSC cell lines are relatively resistant to the anti-proliferative effects of metformin. Bioenergetic and metabolomic analyses were used to metabolically differentiate the metformin-sensitive and metformin-resistant cell lines. Bioenergetically, biguanides elicited a significant decrease in mitochondrial respiration in all HGSC cells and FTSECs. However, biguanides had a greater effect on mitochondrial respiration in metformin sensitive cells. Metabolomic analysis revealed that metformin and phenformin generally induce similar changes in metabolic profiles. Biguanide treatment led to a significant increase in NADH in FTSECs and HGSC cells. Interestingly, biguanide treatment induced changes in the levels of mitochondrial shuttle metabolites, glycerol-3-phopshate (G3P) and aspartate, specifically in HGSC cell lines and not in FTSECs. Greater alterations in G3P or aspartate levels were also found in metformin sensitive cells relative to metformin resistant cells. These data identify bioenergetic and HGSC-specific metabolic effects that correlate with metformin sensitivity and novel metabolic avenues for possible therapeutic intervention.


Glucose deprivation elicits phenotypic plasticity via ZEB1-mediated expression of NNMT.

  • Justyna Kanska‎ et al.
  • Oncotarget‎
  • 2017‎

Glucose is considered the primary energy source for all cells, and some cancers are addicted to glucose. Here, we investigated the functional consequences of chronic glucose deprivation in serous ovarian cancer cells. We found that cells resistant to glucose starvation (glucose-restricted cells) demonstrated increased metabolic plasticity that was dependent on NNMT (Nicotinamide N-methyltransferase) expression. We further show that ZEB1 induced NNMT, rendered cells resistant to glucose deprivation and recapitulated metabolic adaptations and mesenchymal gene expression observed in glucose-restricted cells. NNMT depletion reversed metabolic plasticity in glucose-restricted cells and prevented de novo formation of glucose-restricted colonies. In addition to its role in glucose independence, we found that NNMT was required for other ZEB1-induced phenotypes, such as increased migration. NNMT protein levels were also elevated in metastatic and recurrent tumors compared to matched primary carcinomas, while normal ovary and fallopian tube tissue had no detectable NNMT expression. Our studies define a novel ZEB1/NNMT signaling axis, which elicits mesenchymal gene expression, as well as phenotypic and metabolic plasticity in ovarian cancer cells upon chronic glucose starvation. Understanding the causes of cancer cell plasticity is crucial for the development of therapeutic strategies to counter intratumoral heterogeneity, acquired drug resistance and recurrence in high-grade serous ovarian cancer (HGSC).


The PAX8 cistrome in epithelial ovarian cancer.

  • Emily K Adler‎ et al.
  • Oncotarget‎
  • 2017‎

PAX8 is a lineage-restricted transcription factor that is expressed in epithelial ovarian cancer (EOC) precursor tissues, and in the major EOC histotypes. Frequent overexpression of PAX8 in primary EOCs suggests this factor functions as an oncogene during tumorigenesis, however, the biological role of PAX8 in EOC development is poorly understood. We found that stable knockdown of PAX8 in EOC models significantly reduced cell proliferation and anchorage dependent growth in vitro, and attenuated tumorigenicity in vivo. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and transcriptional profiling were used to create genome-wide maps of PAX8 binding and putative target genes. PAX8 binding sites were significantly enriched in promoter regions (p < 0.05) and superenhancers (p < 0.05). MEME-ChIP analysis revealed that PAX8 binding sites overlapping superenhancers or enhancers, but not promoters, were enriched for JUND/B and ARNT/AHR motifs. Integrating PAX8 ChIP-seq and gene expression data identified PAX8 target genes through their associations within shared topological association domains. Across two EOC models we identified 62 direct regulatory targets based on PAX8 binding in promoters and 1,330 putative enhancer regulatory targets. SEPW1, which is involved in oxidation-reduction, was identified as a PAX8 target gene in both cell line models. While the PAX8 cistrome exhibits a high degree of cell-type specificity, analyses of PAX8 target genes and putative cofactors identified common molecular targets and partners as candidate therapeutic targets for EOC.


Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene.

  • Ed Dicks‎ et al.
  • Oncotarget‎
  • 2017‎

We analyzed whole exome sequencing data in germline DNA from 412 high grade serous ovarian cancer (HGSOC) cases from The Cancer Genome Atlas Project and identified 5,517 genes harboring a predicted deleterious germline coding mutation in at least one HGSOC case. Gene-set enrichment analysis showed enrichment for genes involved in DNA repair (p = 1.8×10-3). Twelve DNA repair genes - APEX1, APLF, ATX, EME1, FANCL, FANCM, MAD2L2, PARP2, PARP3, POLN, RAD54L and SMUG1 - were prioritized for targeted sequencing in up to 3,107 HGSOC cases, 1,491 cases of other epithelial ovarian cancer (EOC) subtypes and 3,368 unaffected controls of European origin. We estimated mutation prevalence for each gene and tested for associations with disease risk. Mutations were identified in both cases and controls in all genes except MAD2L2, where we found no evidence of mutations in controls. In FANCM we observed a higher mutation frequency in HGSOC cases compared to controls (29/3,107 cases, 0.96 percent; 13/3,368 controls, 0.38 percent; P=0.008) with little evidence for association with other subtypes (6/1,491, 0.40 percent; P=0.82). The relative risk of HGSOC associated with deleterious FANCM mutations was estimated to be 2.5 (95% CI 1.3 - 5.0; P=0.006). In summary, whole exome sequencing of EOC cases with large-scale replication in case-control studies has identified FANCM as a likely novel susceptibility gene for HGSOC, with mutations associated with a moderate increase in risk. These data may have clinical implications for risk prediction and prevention approaches for high-grade serous ovarian cancer in the future and a significant impact on reducing disease mortality.


Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci.

  • Dylan M Glubb‎ et al.
  • Oncotarget‎
  • 2017‎

We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates at the 1q22 and 19p12 loci, as well as other regional variants, were nominally associated with patient outcome; however, no associations reached our threshold for statistical significance (p<1×10-5). Larger patient numbers will be needed to convincingly identify any true associations at these loci.


Transcriptomic analysis reveals inhibition of androgen receptor activity by AMPK in prostate cancer cells.

  • Sarah Jurmeister‎ et al.
  • Oncotarget‎
  • 2014‎

Metabolic alterations contribute to prostate cancer development and progression; however, the role of the central metabolic regulator AMP-activated protein kinase (AMPK) remains controversial. The androgen receptor (AR), a key driver of prostate cancer, regulates prostate cancer cell metabolism by driving the expression of a network of metabolic genes and activates AMPK through increasing the expression of one of its upstream kinases. To more clearly define the role of AMPK in prostate cancer, we performed expression profiling following pharmacologic activation of this kinase. We found that genes down-regulated upon AMPK activation were over-expressed in prostate cancer, consistent with a tumour suppressive function of AMPK. Strikingly, we identified the AR as one of the most significantly enriched transcription factors mediating gene expression changes downstream of AMPK signalling in prostate cancer cells. Activation of AMPK inhibited AR transcriptional activity and reduced androgen-dependent expression of known AR target genes. Conversely, knock-down of AMPK increased AR activity. Modulation of AR expression could not explain these effects. Instead, we observed that activation of AMPK reduced nuclear localisation of the AR. We thus propose the presence of a negative feedback loop in prostate cancer cells whereby AR activates AMPK and AMPK feeds back to limit AR-driven transcription.


Investigation of factors affecting the efficacy of 3C23K, a human monoclonal antibody targeting MISIIR.

  • Sarah E Gill‎ et al.
  • Oncotarget‎
  • 2017‎

MISIIR is a potential target for ovarian cancer (OC) therapy due to its tissue-specific pattern of expression. 3C23K is a novel therapeutic monoclonal anti-MISIIR antibody designed to recruit effector cells and promote cell death through ADCC (antibody dependent cell-mediated cytotoxicity). Our objective was to determine the tolerability and efficacy of 3C23K in OC patient-derived xenografts (PDX) and to identify factors affecting efficacy. Quantitative RT-PCR, immunohistochemistry (IHC), and flow cytometry were used to categorize MISIIR expression in established PDX models derived from primary OC patients. We selected two high expressing models and two low expressing models for in vivo testing. One xenograft model using an MISIIR over-expressing SKOV3ip cell line (Z3) was a positive control. The primary endpoint was change in tumor size. The secondary endpoint was final tumor mass. We observed no statistically significant differences between control and treated animals. The lack of response could be secondary to a number of variables including the lack of known biomarkers of response, the low membrane expression of MISIIR, and a limited ability of 3C23K to induce ADCC in PDX models. Further study is needed to determine the magnitude of ovarian cancer response to 3C23K and also if there is a threshold surface expression to predict response.


Characterization of fusion genes in common and rare epithelial ovarian cancer histologic subtypes.

  • Madalene A Earp‎ et al.
  • Oncotarget‎
  • 2017‎

Gene fusions play a critical role in some cancers and can serve as important clinical targets. In epithelial ovarian cancer (EOC), the contribution of fusions, especially by histological type, is unclear. We therefore screened for recurrent fusions in a histologically diverse panel of 220 EOCs using RNA sequencing. The Pipeline for RNA-Sequencing Data Analysis (PRADA) was used to identify fusions and allow for comparison with The Cancer Genome Atlas (TCGA) tumors. Associations between fusions and clinical prognosis were evaluated using Cox proportional hazards regression models. Nine recurrent fusions, defined as occurring in two or more tumors, were observed. CRHR1-KANSL1 was the most frequently identified fusion, identified in 6 tumors (2.7% of all tumors). This fusion was not associated with survival; other recurrent fusions were too rare to warrant survival analyses. One recurrent in-frame fusion, UBAP1-TGM7, was unique to clear cell (CC) EOC tumors (in 10%, or 2 of 20 CC tumors). We found some evidence that CC tumors harbor more fusions on average than any other EOC histological type, including high-grade serous (HGS) tumors. CC tumors harbored a mean of 7.4 fusions (standard deviation [sd] = 7.4, N = 20), compared to HGS EOC tumors mean of 2.0 fusions (sd = 3.3, N = 141). Few fusion genes were detected in endometrioid tumors (mean = 0.24, sd = 0.74, N = 55) or mucinous tumors (mean = 0.25, sd = 0.5, N = 4) tumors. To conclude, we identify one fusion at 10% frequency in the CC EOC subtype, but find little evidence for common (> 5% frequency) recurrent fusion genes in EOC overall, or in HGS subtype-specific EOC tumors.


A genetic study and meta-analysis of the genetic predisposition of prostate cancer in a Chinese population.

  • Jacek Marzec‎ et al.
  • Oncotarget‎
  • 2016‎

Prostate cancer predisposition has been extensively investigated in European populations, but there have been few studies of other ethnic groups. To investigate prostate cancer susceptibility in the under-investigated Chinese population, we performed single-nucleotide polymorphism (SNP) array analysis on a cohort of Chinese cases and controls and then meta-analysis with data from the existing Chinese prostate cancer genome-wide association study (GWAS). Genotyping 211,155 SNPs in 495 cases and 640 controls of Chinese ancestry identified several new suggestive Chinese prostate cancer predisposition loci. However, none of them reached genome-wide significance level either by meta-analysis or replication study. The meta-analysis with the Chinese GWAS data revealed that four 8q24 loci are the main contributors to Chinese prostate cancer risk and the risk alleles from three of them exist at much higher frequencies in Chinese than European populations. We also found that several predisposition loci reported in Western populations have different effect on Chinese men. Therefore, this first extensive single-nucleotide polymorphism study of Chinese prostate cancer in comparison with European population indicates that four loci on 8q24 contribute to a great risk of prostate cancer in a considerable large proportion of Chinese men. Based on those four loci, the top 10% of the population have six- or two-fold prostate cancer risk compared with men of the bottom 10% or median risk respectively, which may facilitate the design of prostate cancer genetic risk screening and prevention in Chinese men. These findings also provide additional insights into the etiology and pathogenesis of prostate cancer.


Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer.

  • Nelma Pertega-Gomes‎ et al.
  • Oncotarget‎
  • 2015‎

Monocarboxylate Transporter 2 (MCT2) is a major pyruvate transporter encoded by the SLC16A7 gene. Recent studies pointed to a consistent overexpression of MCT2 in prostate cancer (PCa) suggesting MCT2 as a putative biomarker and molecular target. Despite the importance of this observation the mechanisms involved in MCT2 regulation are unknown. Through an integrative analysis we have discovered that selective demethylation of an internal SLC16A7/MCT2 promoter is a recurrent event in independent PCa cohorts. This demethylation is associated with expression of isoforms differing only in 5'-UTR translational control motifs, providing one contributing mechanism for MCT2 protein overexpression in PCa. Genes co-expressed with SLC16A7/MCT2 also clustered in oncogenic-related pathways and effectors of these signalling pathways were found to bind at the SLC16A7/MCT2 gene locus. Finally, MCT2 knock-down attenuated the growth of PCa cells. The present study unveils an unexpected epigenetic regulation of SLC16A7/MCT2 isoforms and identifies a link between SLC16A7/MCT2, Androgen Receptor (AR), ETS-related gene (ERG) and other oncogenic pathways in PCa. These results underscore the importance of combining data from epigenetic, transcriptomic and protein level changes to allow more comprehensive insights into the mechanisms underlying protein expression, that in our case provide additional weight to MCT2 as a candidate biomarker and molecular target in PCa.


Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS.

  • Barbie Taylor-Harding‎ et al.
  • Oncotarget‎
  • 2015‎

High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC.


A functional variant in HOXA11-AS, a novel long non-coding RNA, inhibits the oncogenic phenotype of epithelial ovarian cancer.

  • Edward J Richards‎ et al.
  • Oncotarget‎
  • 2015‎

The homeobox A (HOXA) region of protein-coding genes impacts female reproductive system embryogenesis and ovarian carcinogenesis. The 5-prime end of HOXA includes three long non-coding RNAs (lncRNAs) (HOXA10-AS, HOXA11-AS, and HOTTIP) that are underexplored in epithelial ovarian cancer (EOC). We evaluated whether common genetic variants in these lncRNAs are associated with EOC risk and/or have functional roles in EOC development. Using genome-wide association study data from 1,201 serous EOC cases and 2,009 controls, an exonic variant within HOXA11-AS, rs17427875 (A>T), was marginally associated with reduced serous EOC risk (OR = 0.88 (95% CI: 0.78-1.01, p = 0.06). Functional studies of ectopic expression of HOXA11-AS minor allele T in EOC cells showed decreased survival, proliferation, migration, and invasion compared to common allele A expression. Additionally, stable expression of HOXA11-AS minor allele T reduced primary tumor growth in mouse xenograft models to a greater extent than common allele A. Furthermore, HOXA11-AS expression levels were significantly lower in human EOC tumors than normal ovarian tissues (p < 0.05), suggesting that HOXA11-AS has a tumor suppressor function in EOC which may be enhanced by the T allele. These findings demonstrate for the first time a role for HOXA11-AS in EOC with effects that could be modified by germline variants.


Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer.

  • Shalaka S Hampras‎ et al.
  • Oncotarget‎
  • 2016‎

Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer.


HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer.

  • Helen Ross-Adams‎ et al.
  • Oncotarget‎
  • 2016‎

Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: