Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 47 papers

The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation.

  • Yongjie Wei‎ et al.
  • eLife‎
  • 2015‎

Autophagy is a fundamental adaptive response to amino acid starvation orchestrated by conserved gene products, the autophagy (ATG) proteins. However, the cellular cues that activate the function of ATG proteins during amino acid starvation are incompletely understood. Here we show that two related stress-responsive kinases, members of the p38 mitogen-activated protein kinase (MAPK) signaling pathway MAPKAPK2 (MK2) and MAPKAPK3 (MK3), positively regulate starvation-induced autophagy by phosphorylating an essential ATG protein, Beclin 1, at serine 90, and that this phosphorylation site is essential for the tumor suppressor function of Beclin 1. Moreover, MK2/MK3-dependent Beclin 1 phosphorylation (and starvation-induced autophagy) is blocked in vitro and in vivo by BCL2, a negative regulator of Beclin 1. Together, these findings reveal MK2/MK3 as crucial stress-responsive kinases that promote autophagy through Beclin 1 S90 phosphorylation, and identify the blockade of MK2/3-dependent Beclin 1 S90 phosphorylation as a mechanism by which BCL2 inhibits the autophagy function of Beclin 1.


The CD40-autophagy pathway is needed for host protection despite IFN-Γ-dependent immunity and CD40 induces autophagy via control of P21 levels.

  • Jose-Andres C Portillo‎ et al.
  • PloS one‎
  • 2010‎

Autophagy degrades pathogens in vitro. The autophagy gene Atg5 has been reported to be required for IFN-γ-dependent host protection in vivo. However, these protective effects occur independently of autophagosome formation. Thus, the in vivo role of classic autophagy in protection conferred by adaptive immunity and how adaptive immunity triggers autophagy are incompletely understood. Employing biochemical, genetic and morphological studies, we found that CD40 upregulates the autophagy molecule Beclin 1 in microglia and triggers killing of Toxoplasma gondii dependent on the autophagy machinery. Infected CD40(-/-) mice failed to upregulate Beclin 1 in microglia/macrophages in vivo. Autophagy-deficient Beclin 1(+/-) mice, mice with deficiency of the autophagy protein Atg7 targeted to microglia/macrophages as well as CD40(-/-) mice exhibited impaired killing of T. gondii and were susceptible to cerebral and ocular toxoplasmosis. Susceptibility to toxoplasmosis occurred despite upregulation of IFN-γ, TNF-α and NOS2, preservation of IFN-γ-induced microglia/macrophage anti-T. gondii activity and the generation of anti-T. gondii T cell immunity. CD40 upregulated Beclin 1 and triggered killing of T. gondii by decreasing protein levels of p21, a molecule that degrades Beclin 1. These studies identified CD40-p21-Beclin 1 as a pathway by which adaptive immunity stimulates autophagy. In addition, they support that autophagy is a mechanism through which CD40-dependent immunity mediates in vivo protection and that the CD40-autophagic machinery is needed for host resistance despite IFN-γ.


Loss of Paneth Cell Autophagy Causes Acute Susceptibility to Toxoplasma gondii-Mediated Inflammation.

  • Elise Burger‎ et al.
  • Cell host & microbe‎
  • 2018‎

The protozoan parasite Toxoplasma gondii triggers severe small intestinal immunopathology characterized by IFN-γ- and intestinal microbiota-mediated inflammation, Paneth cell loss, and bacterial dysbiosis. Paneth cells are a prominent secretory epithelial cell type that resides at the base of intestinal crypts and releases antimicrobial peptides. We demonstrate that the microbiota triggers basal Paneth cell-specific autophagy via induction of IFN-γ, a known trigger of autophagy, to maintain intestinal homeostasis. Deletion of the autophagy protein Atg5 specifically in Paneth cells results in exaggerated intestinal inflammation characterized by complete destruction of the intestinal crypts resembling that seen in pan-epithelial Atg5-deficient mice. Additionally, lack of functional autophagy in Paneth cells within intestinal organoids and T. gondii-infected mice causes increased sensitivity to the proinflammatory cytokine TNF along with increased intestinal permeability, leading to exaggerated microbiota- and IFN-γ-dependent intestinal immunopathology. Thus, Atg5 expression in Paneth cells is essential for tissue protection against cytokine-mediated immunopathology during acute gastrointestinal infection.


Diversity-Oriented Stapling Yields Intrinsically Cell-Penetrant Inducers of Autophagy.

  • Leila Peraro‎ et al.
  • Journal of the American Chemical Society‎
  • 2017‎

Autophagy is an essential pathway by which cellular and foreign material are degraded and recycled in eukaryotic cells. Induction of autophagy is a promising approach for treating diverse human diseases, including neurodegenerative disorders and infectious diseases. Here, we report the use of a diversity-oriented stapling approach to produce autophagy-inducing peptides that are intrinsically cell-penetrant. These peptides induce autophagy at micromolar concentrations in vitro, have aggregate-clearing activity in a cellular model of Huntington's disease, and induce autophagy in vivo. Unexpectedly, the solution structure of the most potent stapled peptide, DD5-o, revealed an α-helical conformation in methanol, stabilized by an unusual (i,i+3) staple which cross-links two d-amino acids. We also developed a novel assay for cell penetration that reports exclusively on cytosolic access and used it to quantitatively compare the cell penetration of DD5-o and other autophagy-inducing peptides. These new, cell-penetrant autophagy inducers and their molecular details are critical advances in the effort to understand and control autophagy. More broadly, diversity-oriented stapling may provide a promising alternative to polycationic sequences as a means for rendering peptides more cell-penetrant.


Sorting nexin 5 mediates virus-induced autophagy and immunity.

  • Xiaonan Dong‎ et al.
  • Nature‎
  • 2021‎

Autophagy, a process of degradation that occurs via the lysosomal pathway, has an essential role in multiple aspects of immunity, including immune system development, regulation of innate and adaptive immune and inflammatory responses, selective degradation of intracellular microorganisms, and host protection against infectious diseases1,2. Autophagy is known to be induced by stimuli such as nutrient deprivation and suppression of mTOR, but little is known about how autophagosomal biogenesis is initiated in mammalian cells in response to viral infection. Here, using genome-wide short interfering RNA screens, we find that the endosomal protein sorting nexin 5 (SNX5)3,4 is essential for virus-induced, but not for basal, stress- or endosome-induced, autophagy. We show that SNX5 deletion increases cellular susceptibility to viral infection in vitro, and that Snx5 knockout in mice enhances lethality after infection with several human viruses. Mechanistically, SNX5 interacts with beclin 1 and ATG14-containing class III phosphatidylinositol-3-kinase (PI3KC3) complex 1 (PI3KC3-C1), increases the lipid kinase activity of purified PI3KC3-C1, and is required for endosomal generation of phosphatidylinositol-3-phosphate (PtdIns(3)P) and recruitment of the PtdIns(3)P-binding protein WIPI2 to virion-containing endosomes. These findings identify a context- and organelle-specific mechanism-SNX5-dependent PI3KC3-C1 activation at endosomes-for initiation of autophagy during viral infection.


An autophagy-related protein Becn2 regulates cocaine reward behaviors in the dopaminergic system.

  • Yoon-Jin Kim‎ et al.
  • Science advances‎
  • 2021‎

Drug abuse is a foremost public health problem. Cocaine is a widely abused drug worldwide that produces various reward-related behaviors. The mechanisms that underlie cocaine-induced disorders are unresolved, and effective treatments are lacking. Here, we found that an autophagy-related protein Becn2 is a previously unidentified regulator of cocaine reward behaviors. Becn2 deletion protects mice from cocaine-stimulated locomotion and reward behaviors, as well as cocaine-induced dopamine accumulation and signaling, by increasing presynaptic dopamine receptor 2 (D2R) autoreceptors in dopamine neurons. Becn2 regulates D2R endolysosomal trafficking, degradation, and cocaine-induced behaviors via interacting with a D2R-bound adaptor GASP1. Inactivating Becn2 by upstream autophagy inhibitors stabilizes striatal presynaptic D2R, reduces dopamine release and signaling, and prevents cocaine reward in normal mice. Thus, the autophagy protein Becn2 is essential for cocaine psychomotor stimulation and reward through regulating dopamine neurotransmission, and targeting Becn2 by autophagy inhibitors is a potential strategy to prevent cocaine-induced behaviors.


STING controls energy stress-induced autophagy and energy metabolism via STX17.

  • Yueguang Rong‎ et al.
  • The Journal of cell biology‎
  • 2022‎

The stimulator of interferon genes (STING) plays a critical role in innate immunity. Emerging evidence suggests that STING is important for DNA or cGAMP-induced non-canonical autophagy, which is independent of a large part of canonical autophagy machineries. Here, we report that, in the absence of STING, energy stress-induced autophagy is upregulated rather than downregulated. Depletion of STING in Drosophila fat cells enhances basal- and starvation-induced autophagic flux. During acute exercise, STING knockout mice show increased autophagy flux, exercise endurance, and altered glucose metabolism. Mechanistically, these observations could be explained by the STING-STX17 interaction. STING physically interacts with STX17, a SNARE that is essential for autophagosome biogenesis and autophagosome-lysosome fusion. Energy crisis and TBK1-mediated phosphorylation both disrupt the STING-STX17 interaction, allow different pools of STX17 to translocate to phagophores and mature autophagosomes, and promote autophagic flux. Taken together, we demonstrate a heretofore unexpected function of STING in energy stress-induced autophagy through spatial regulation of autophagic SNARE STX17.


Structural basis for gating mechanism of the human sodium-potassium pump.

  • Phong T Nguyen‎ et al.
  • Nature communications‎
  • 2022‎

P2-type ATPase sodium-potassium pumps (Na+/K+-ATPases) are ion-transporting enzymes that use ATP to transport Na+ and K+ on opposite sides of the lipid bilayer against their electrochemical gradients to maintain ion concentration gradients across the membranes in all animal cells. Despite the available molecular architecture of the Na+/K+-ATPases, a complete molecular mechanism by which the Na+ and K+ ions access into and are released from the pump remains unknown. Here we report five cryo-electron microscopy (cryo-EM) structures of the human alpha3 Na+/K+-ATPase in its cytoplasmic side-open (E1), ATP-bound cytoplasmic side-open (E1•ATP), ADP-AlF4- trapped Na+-occluded (E1•P-ADP), BeF3- trapped exoplasmic side-open (E2P) and MgF42- trapped K+-occluded (E2•Pi) states. Our work reveals the atomically resolved structural detail of the cytoplasmic gating mechanism of the Na+/K+-ATPase.


Quantitative phosphoproteomic analyses identify STK11IP as a lysosome-specific substrate of mTORC1 that regulates lysosomal acidification.

  • Zhenzhen Zi‎ et al.
  • Nature communications‎
  • 2022‎

The evolutionarily conserved serine/threonine kinase mTORC1 is a central regulator of cell growth and proliferation. mTORC1 is activated on the lysosome surface. However, once mTORC1 is activated, it is unclear whether mTORC1 phosphorylates local lysosomal proteins to regulate specific aspects of lysosomal biology. Through cross-reference analyses of the lysosome proteome with the mTORC1-regulated phosphoproteome, we identify STK11IP as a lysosome-specific substrate of mTORC1. mTORC1 phosphorylates STK11IP at Ser404. Knockout of STK11IP leads to a robust increase of autophagy flux. Dephosphorylation of STK11IP at Ser404 represses the role of STK11IP as an autophagy inhibitor. Mechanistically, STK11IP binds to V-ATPase, and regulates the activity of V-ATPase. Knockout of STK11IP protects mice from fasting or Methionine/Choline-Deficient Diet (MCD)-induced fatty liver. Thus, our study demonstrates that STK11IP phosphorylation represents a mechanism for mTORC1 to regulate lysosomal acidification and autophagy, and points to STK11IP as a promising therapeutic target for the amelioration of diseases with aberrant autophagy signaling.


Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae.

  • Zhenyi An‎ et al.
  • Autophagy‎
  • 2014‎

In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G₁/G₀ in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G₂/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G₂/M transition and arrest in G₁/G 0₀ autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G₁/G₀ quiescent state.


Guanabenz Treatment Accelerates Disease in a Mutant SOD1 Mouse Model of ALS.

  • Fernando G Vieira‎ et al.
  • PloS one‎
  • 2015‎

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor neurons. The mechanisms leading to motor neuron degeneration in ALS are unclear. However, there is evidence for involvement of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in ALS, notably in mutant SOD1 mediated models of ALS. Stress induced phosphorylation of the eIF2 alpha subunit by eukaryotic translation initiation factor 2-alpha kinase 3 Perk activates the UPR. Guanabenz is a centrally acting alpha2 adrenergic receptor agonist shown to interact with a regulatory subunit of the protein phosphatase, Pp1/Gadd34, and selectively disrupt the dephosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eif2alpha). Here we demonstrate that guanabenz is protective in fibroblasts expressing G93A mutant SOD1 when they are exposed to tunicamycin mediated ER stress. However, in contrast to other reports, guanabenz treatment accelerated ALS-like disease progression in a strain of mutant SOD1 transgenic ALS mice. This study highlights challenges of pharmacological interventions of cellular stress responses in whole animal models of ALS.


Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation.

  • Tobias Wijshake‎ et al.
  • PLoS genetics‎
  • 2012‎

Mosaic Variegated Aneuploidy (MVA) syndrome is a rare autosomal recessive disorder characterized by inaccurate chromosome segregation and high rates of near-diploid aneuploidy. Children with MVA syndrome die at an early age, are cancer prone, and have progeroid features like facial dysmorphisms, short stature, and cataracts. The majority of MVA cases are linked to mutations in BUBR1, a mitotic checkpoint gene required for proper chromosome segregation. Affected patients either have bi-allelic BUBR1 mutations, with one allele harboring a missense mutation and the other a nonsense mutation, or mono-allelic BUBR1 mutations combined with allelic variants that yield low amounts of wild-type BubR1 protein. Parents of MVA patients that carry single allele mutations have mild mitotic defects, but whether they are at risk for any of the pathologies associated with MVA syndrome is unknown. To address this, we engineered a mouse model for the nonsense mutation 2211insGTTA (referred to as GTTA) found in MVA patients with bi-allelic BUBR1 mutations. Here we report that both the median and maximum lifespans of the resulting BubR1(+/GTTA) mice are significantly reduced. Furthermore, BubR1(+/GTTA) mice develop several aging-related phenotypes at an accelerated rate, including cataract formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. BubR1(+/GTTA) mice develop mild aneuploidies and show enhanced growth of carcinogen-induced tumors. Collectively, these data demonstrate that the BUBR1 GTTA mutation compromises longevity and healthspan, raising the interesting possibility that mono-allelic changes in BUBR1 might contribute to differences in aging rates in the general population.


Peroxisomal protein PEX13 functions in selective autophagy.

  • Ming Y Lee‎ et al.
  • EMBO reports‎
  • 2017‎

PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease-associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13-mediated mitophagy may contribute to ZSS pathogenesis.


Primary Neurons and Differentiated NSC-34 Cells Are More Susceptible to Arginine-Rich ALS Dipeptide Repeat Protein-Associated Toxicity than Non-Differentiated NSC-34 and CHO Cells.

  • Anna L Gill‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

A repeat expansion mutation in the C9orf72 gene is the most common known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this study, using multiple cell-based assay systems, we reveal both increased dipeptide repeat protein (DRP) toxicity in primary neurons and in differentiated neuronal cell lines. Using flow cytometry and confocal laser scanning microscopy of cells treated with fluorescein isothiocyanate (FITC)-labeled DRPs, we confirm that poly-glycine-arginine (GR) and poly-proline-arginine (PR) DRPs entered cells more readily than poly-glycine-proline (GP) and poly-proline-alanine (PA) DRPs. Our findings suggest that the toxicity of C9-DRPs may be influenced by properties associated with differentiated and aging motor neurons. Further, our findings provide sensitive cell-based assay systems to test phenotypic rescue ability of potential interventions.


Increased autophagy blocks HER2-mediated breast tumorigenesis.

  • Silvia Vega-Rubín-de-Celis‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Allelic loss of the autophagy gene, beclin 1/BECN1, increases the risk of patients developing aggressive, including human epidermal growth factor receptor 2 (HER2)-positive, breast cancers; however, it is not known whether autophagy induction may be beneficial in preventing HER2-positive breast tumor growth. We explored the regulation of autophagy in breast cancer cells by HER2 in vitro and the effects of genetic and pharmacological strategies to increase autophagy on HER2-driven breast cancer growth in vivo. Our findings demonstrate that HER2 interacts with Beclin 1 in breast cancer cells and inhibits autophagy. Mice with increased basal autophagy due to a genetically engineered mutation in Becn1 are protected from HER2-driven mammary tumorigenesis, and HER2 fails to inhibit autophagy in primary cells derived from these mice. Moreover, treatment of mice with HER2-positive human breast cancer xenografts with the Tat-Beclin 1 autophagy-inducing peptide inhibits tumor growth as effectively as a clinically used HER2 tyrosine kinase inhibitor (TKI). This inhibition of tumor growth is associated with a robust induction of autophagy, a disruption of HER2/Beclin 1 binding, and a transcriptional signature in the tumors distinct from that observed with HER2 TKI treatment. Taken together, these findings indicate that the HER2-mediated inhibition of Beclin 1 and autophagy likely contributes to HER2-mediated tumorigenesis and that strategies to block HER2/Beclin 1 binding and/or increase autophagy may represent a new therapeutic approach for HER2-positive breast cancers.


BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy.

  • Jose Manuel Bravo-San Pedro‎ et al.
  • Autophagy‎
  • 2015‎

Disruption of the complex of BECN1 with BCL2 or BCL2L1/BCL-XL is an essential switch that turns on cellular autophagy in response to environmental stress or treatment with BH3 peptidomimetics. Recently, it has been proposed that BCL2 and BCL2L1/BCL-XL may inhibit autophagy indirectly through a mechanism dependent on the proapoptotic BCL2 family members, BAX and BAK1. Here we report that the BH3 mimetic, ABT-737, induces autophagy in parallel with disruption of BCL2-BECN1 binding in 2 different apoptosis-deficient cell types lacking BAX and BAK1, namely in mouse embryonic fibroblasts cells and in human colon cancer HCT116 cells. We conclude that the BH3 mimetic ABT-737 induces autophagy through a BAX and BAK1-independent mechanism that likely involves disruption of BECN1 binding to antiapoptotic BCL2 family members.


A Noncanonical Autophagy Pathway Restricts Toxoplasma gondii Growth in a Strain-Specific Manner in IFN-γ-Activated Human Cells.

  • Elizabeth M Selleck‎ et al.
  • mBio‎
  • 2015‎

A core set of autophagy proteins is required for gamma interferon (IFN-γ)-mediated clearance of Toxoplasma gondii in the mouse because of their control of several downstream effectors, including immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). However, these effectors are absent (i.e., IRGs) from or nonessential (i.e., GBPs) in IFN-γ-activated human cells, raising the question of how these cells control parasite replication. Here, we define a novel role for ubiquitination and recruitment of autophagy adaptors in the strain-specific control of T. gondii replication in IFN-γ-activated human cells. Vacuoles containing susceptible strains of T. gondii became ubiquitinated, recruited the adaptors p62 and NDP52, and were decorated with LC3. Parasites within LC3-positive vacuoles became enclosed in multiple layers of host membranes, resulting in stunting of parasite replication. However, LC3-positive T. gondii-containing vacuoles did not fuse with endosomes and lysosomes, indicating that this process is fundamentally different from xenophagy, a form of autophagy involved in the control of intracellular bacterial pathogens. Genetic knockout of ATG16L or ATG7 reverted the membrane encapsulation and restored parasite replication, indicating that core autophagy proteins involved in LC3 conjugation are important in the control of parasite growth. Despite a role for the core autophagy machinery in this process, upstream activation through Beclin 1 was not sufficient to enhance the ubiquitination of T. gondii-containing vacuoles, suggesting a lack of reliance on canonical autophagy. These findings demonstrate a new mechanism for IFN-γ-dependent control of T. gondii in human cells that depends on ubiquitination and core autophagy proteins that mediate membrane engulfment and restricted growth.


Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan.

  • Darren J Baker‎ et al.
  • Nature cell biology‎
  • 2013‎

The BubR1 gene encodes for a mitotic regulator that ensures accurate segregation of chromosomes through its role in the mitotic checkpoint and the establishment of proper microtubule-kinetochore attachments. Germline mutations that reduce BubR1 abundance cause aneuploidy, shorten lifespan and induce premature ageing phenotypes and cancer in both humans and mice. A reduced BubR1 expression level is also a feature of chronological ageing, but whether this age-related decline has biological consequences is unknown. Using a transgenic approach in mice, we show that sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorigenesis, even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras. We find that BubR1 overabundance exerts its protective effect by correcting mitotic checkpoint impairment and microtubule-kinetochore attachment defects. Furthermore, sustained high-level expression of BubR1 extends lifespan and delays age-related deterioration and aneuploidy in several tissues. Collectively, these data uncover a generalized function for BubR1 in counteracting defects that cause whole-chromosome instability and suggest that modulating BubR1 provides a unique opportunity to extend healthy lifespan.


Genetic inhibition of autophagy promotes p53 loss-of-heterozygosity and tumorigenesis.

  • Eunmyong Lee‎ et al.
  • Oncotarget‎
  • 2016‎

Autophagy is an evolutionarily conserved lysosomal degradation pathway that plays an essential role in enabling eukaryotic organisms to adapt to nutrient deprivation and other forms of environmental stress. In metazoan organisms, autophagy is essential for differentiation and normal development; however, whether the autophagy pathway promotes or inhibits tumorigenesis is controversial, and the possible mechanisms linking defective autophagy to cancer remain unclear. To determine if autophagy is important for tumor suppression, we inhibited autophagy in transgenic zebrafish via stable, tissue-specific expression of a dominant-negative autophagy protein Atg5K130R. In heterozygous tp53 mutants, expression of dominant-negative atg5K130R increased tumor incidence and decreased tumor latency compared to non-transgenic heterozygous tp53 mutant controls. In a tp53-deficient background, Tg(mitfa:atg5K130R) mutantsdeveloped malignant peripheral nerve sheath tumors (MPNSTs), neuroendocrine tumors and small-cell tumors. Expression of a Sox10-dependent GFP transgene in the tumors demonstrated their origin from neural crest cells, lending support to a model in which mitfa-expressing cells can arise from sox10+ Schwann cell precursors. Tumors from the transgenic animals exhibited increased DNA damage and loss-of-heterozygosity of tp53. Taken together, our data indicate that genetic inhibition of autophagy promotes tumorigenesis in tp53 mutant zebrafish, and suggest a possible role for autophagy in the regulation of genome stability during oncogenesis.


The Ubiquitin Ligase Smurf1 Functions in Selective Autophagy of Mycobacterium tuberculosis and Anti-tuberculous Host Defense.

  • Luis H Franco‎ et al.
  • Cell host & microbe‎
  • 2017‎

During antibacterial autophagy, ubiquitination of intracellular bacteria recruits proteins that mediate bacterial delivery to the lysosome for degradation. Smurf1 is an E3 ubiquitin ligase whose role in selective bacterial autophagy is unknown. We show that Smurf1 facilitates selective autophagy of the human pathogen Mycobacterium tuberculosis (Mtb). Smurf1-/- macrophages are defective in recruiting polyubiquitin, the proteasome, the ubiquitin-binding autophagy adaptor NBR1, the autophagy protein LC3, and the lysosomal marker LAMP1 to Mtb-associated structures and are more permissive for Mtb growth. This function of Smurf1 requires both its ubiquitin-ligase and C2 phospholipid-binding domains, and involves K48- rather than K63-linked ubiquitination. Chronically infected Smurf1-/- mice have increased bacterial load, increased lung inflammation, and accelerated mortality. SMURF1 controls Mtb replication in human macrophages and associates with bacteria in lungs of patients with pulmonary tuberculosis. Thus, Smurf1 is required for selective autophagy of Mtb and host defense against tuberculosis infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: