Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 91 papers

De novo intrachromosomal gene conversion from OPN1MW to OPN1LW in the male germline results in Blue Cone Monochromacy.

  • Elena Buena-Atienza‎ et al.
  • Scientific reports‎
  • 2016‎

X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. 'LIAVA', 'LVAVA') with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the 'LIAVA' haplotype derived from an ancestral less deleterious 'LIAVS' haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree.


Identifying mutations in Tunisian families with retinal dystrophy.

  • Imen Habibi‎ et al.
  • Scientific reports‎
  • 2016‎

Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.


CDHR1 mutations in retinal dystrophies.

  • Katarina Stingl‎ et al.
  • Scientific reports‎
  • 2017‎

We report ophthalmic and genetic findings in patients with autosomal recessive retinitis pigmentosa (RP), cone-rod dystrophy (CRD) or cone dystrophy (CD) harboring potential pathogenic variants in the CDHR1 gene. Detailed ophthalmic examination was performed in seven sporadic and six familial subjects. Mutation screening was done using a customized next generation sequencing panel targeting 105 genes implicated in inherited retinal disorders. In one family, homozygosity mapping with subsequent candidate gene analysis was performed. Stringent filtering for rare and potentially disease causing variants following a model of autosomal recessive inheritance led to the identification of eleven different CDHR1 variants in nine index cases. All variants were novel at the time of their identification. In silico analyses confirmed their pathogenic potential. Minigene assays were performed for two non-canonical splice site variants and revealed missplicing for the mutant alleles. Mutations in CDHR1 are a rare cause of retinal dystrophy. Our study further expands the mutational spectrum of this gene and the associated clinical presentation.


Identification of HMX1 target genes: a predictive promoter model approach.

  • Arnaud Boulling‎ et al.
  • Molecular vision‎
  • 2013‎

A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes.


Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy.

  • Susanne Roosing‎ et al.
  • American journal of human genetics‎
  • 2013‎

The majority of the genetic causes of autosomal-recessive (ar) cone-rod dystrophy (CRD) are currently unknown. A combined approach of homozygosity mapping and exome sequencing revealed a homozygous nonsense mutation (c.565C>T [p.Glu189*]) in RAB28 in a German family with three siblings with arCRD. Another homozygous nonsense mutation (c.409C>T [p.Arg137*]) was identified in a family of Moroccan Jewish descent with two siblings affected by arCRD. All five affected individuals presented with hyperpigmentation in the macula, progressive loss of the visual acuity, atrophy of the retinal pigment epithelium, and severely reduced cone and rod responses on the electroretinogram. RAB28 encodes a member of the Rab subfamily of the RAS-related small GTPases. Alternative RNA splicing yields three predicted protein isoforms with alternative C-termini, which are all truncated by the nonsense mutations identified in the arCRD families in this report. Opposed to other Rab GTPases that are generally geranylgeranylated, RAB28 is predicted to be farnesylated. Staining of rat retina showed localization of RAB28 to the basal body and the ciliary rootlet of the photoreceptors. Analogous to the function of other RAB family members, RAB28 might be involved in ciliary transport in photoreceptor cells. This study reveals a crucial role for RAB28 in photoreceptor function and suggests that mutations in other Rab proteins may also be associated with retinal dystrophies.


Union makes strength: a worldwide collaborative genetic and clinical study to provide a comprehensive survey of RD3 mutations and delineate the associated phenotype.

  • Isabelle Perrault‎ et al.
  • PloS one‎
  • 2013‎

Leber congenital amaurosis (LCA) is the earliest and most severe retinal degeneration (RD), and the most common cause of incurable blindness diagnosed in children. It is occasionally the presenting symptom of multisystemic ciliopathies which diagnosis will require a specific care of patients. Nineteen LCA genes are currently identified and three of them account for both non-syndromic and syndromic forms of the disease. RD3 (LCA12) was implicated as a LCA gene based on the identification of homozygous truncating mutations in two LCA families despite the screening of large cohorts of patients. Here we provide a comprehensive survey of RD3 mutations and of their clinical expression through the screening of a cohort of 852 patients originating worldwide affected with LCA or early-onset and severe RD. We identified three RD3 mutations in seven unrelated consanguineous LCA families - i.e., a 2 bp deletion and two nonsense mutations - predicted to cause complete loss of function. Five families originating from the Southern Shores of the Mediterranean segregated a similar mutation (c.112C>T, p.R38*) suggesting that this change may have resulted from an ancient founder effect. Considering the low frequency of RD3 carriers, the recurrence risk for LCA in non-consanguineous unions is negligible for both heterozygote and homozygote RD3 individuals. The LCA12 phenotype in our patients is highly similar to those of patients with mutant photoreceptor-specific guanylate cyclase (GUCY2D/LCA1). This observation is consistent with the report of the role of RD3 in trafficking of GUCYs and gives further support to a common mechanism of photoreceptor degeneration in LCA12 and LCA1, i.e., inability to increase cytoplasmic cGMP concentration in outer segments and thus to recover the dark-state. Similar to LCA1, LCA12 patients have no extraocular symptoms despite complete inactivation of both RD3 alleles, supporting the view that extraocular investigations in LCA infants with RD3 mutations should be avoided.


Bigh3 silencing increases retinoblastoma tumor growth in the murine SV40-TAg-Rb model.

  • Nathalie Allaman-Pillet‎ et al.
  • Oncotarget‎
  • 2017‎

BIGH3, a secreted protein of the extracellular matrix interacts with collagen and integrins on the cell surface. BIGH3 can have opposing functions in cancer, acting either as tumor suppressor or promoter by enhancing tumor progression and angiogenesis. In the eye, BIGH3 is expressed in the cornea and the retinal pigment epithelium and could impact on the development of retinoblastoma, the most common paediatric intraocular neoplasm. Retinoblastoma initiation requires the inactivation of both alleles of the RB1 tumor suppressor gene in the developing retina and tumor progression involves additional genomic changes. To determine whether BIGH3 affects retinoblastoma development, we generated a retinoblastoma mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing in these mice resulted in enhanced tumor development in the retina. A decrease in apoptosis is involved in the initial events of tumorigenesis, followed by an increased activity of the pro-survival ERK pathway as well as an upregulation of cyclin-dependent kinases (CDKs). Taken together, these data suggest that BIGH3 acts as a tumor suppressor in the retina.


Extra-viral DNA in adeno-associated viral vector preparations induces TLR9-dependent innate immune responses in human plasmacytoid dendritic cells.

  • Kirsten Bucher‎ et al.
  • Scientific reports‎
  • 2023‎

Adeno-associated viral (AAV) vector suspensions produced in either human derived HEK cells or in Spodoptera frugiperda (Sf9) insect cells differ in terms of residual host cell components as well as species-specific post-translational modifications displayed on the AAV capsid proteins. Here we analysed the impact of these differences on the immunogenic properties of the vector. We stimulated human plasmacytoid dendritic cells with various lots of HEK cell-produced and Sf9 cell-produced AAV-CMV-eGFP vectors derived from different manufacturers. We found that AAV8-CMV-eGFP as well as AAV2-CMV-eGFP vectors induced lot-specific but not production platform-specific or manufacturer-specific inflammatory cytokine responses. These could be reduced or abolished by blocking toll-like receptor 9 signalling or by enzymatically reducing DNA in the vector lots using DNase. Successful HEK cell transduction by DNase-treated AAV lots and DNA analyses demonstrated that DNase did not affect the integrity of the vector but degraded extra-viral DNA. We conclude that both HEK- and Sf9-cell derived AAV preparations can contain immunogenic extra-viral DNA components which can trigger lot-specific inflammatory immune responses. This suggests that improved strategies to remove extra-viral DNA impurities may be instrumental in reducing the immunogenic properties of AAV vector preparations.


X-Linked Retinitis Pigmentosa Caused by Non-Canonical Splice Site Variants in RPGR.

  • Friederike Kortüm‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

We aimed to validate the effect of non-canonical splice site variants in the RPGR gene in five patients from four families diagnosed with retinitis pigmentosa. Four variants located in intron 2 (c.154 + 3_154 + 6del), intron 3 (c.247 + 5G>A), intron 7 (c.779-5T>G), and intron 13 (c.1573-12A>G), respectively, were analyzed by means of in vitro splice assays. Splicing analysis revealed different aberrant splicing events, including exon skipping and intronic nucleotide addition, which are predicted to lead either to an in-frame deletion affecting relevant protein domains or to a frameshift of the open reading frame. Our data expand the landscape of pathogenic variants in RPGR, thereby increasing the genetic diagnostic rate in retinitis pigmentosa and allowing patients harboring the analyzed variants to be enrolled in clinical trials.


Dominant mutations in mtDNA maintenance gene SSBP1 cause optic atrophy and foveopathy.

  • Camille Piro-Mégy‎ et al.
  • The Journal of clinical investigation‎
  • 2020‎

Mutations in genes encoding components of the mitochondrial DNA (mtDNA) replication machinery cause mtDNA depletion syndromes (MDSs), which associate ocular features with severe neurological syndromes. Here, we identified heterozygous missense mutations in single-strand binding protein 1 (SSBP1) in 5 unrelated families, leading to the R38Q and R107Q amino acid changes in the mitochondrial single-stranded DNA-binding protein, a crucial protein involved in mtDNA replication. All affected individuals presented optic atrophy, associated with foveopathy in half of the cases. To uncover the structural features underlying SSBP1 mutations, we determined a revised SSBP1 crystal structure. Structural analysis suggested that both mutations affect dimer interactions and presumably distort the DNA-binding region. Using patient fibroblasts, we validated that the R38Q variant destabilizes SSBP1 dimer/tetramer formation, affects mtDNA replication, and induces mtDNA depletion. Our study showing that mutations in SSBP1 cause a form of dominant optic atrophy frequently accompanied with foveopathy brings insights into mtDNA maintenance disorders.


Different Phenotypes in Pseudodominant Inherited Retinal Dystrophies.

  • Imen Habibi‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Retinal dystrophies (RD) are a group of Mendelian disorders caused by rare genetic variations leading to blindness. A pathogenic variant may manifest in both dominant or recessive mode and clinical and genetic heterogeneity makes it difficult to establish a precise diagnosis. In this study, families with autosomal dominant RD in successive generations were identified, and we aimed to determine the disease's molecular origin in these consanguineous families. Whole exome sequencing was performed in the index patient of each family. The aim was to determine whether these cases truly represented examples of dominantly inherited RD, or whether another mode of inheritance might be applicable. Six potentially pathogenic variants in four genes were identified in four families. In index patient with enhanced S-cone syndrome in F1, we identified a new digenetic combination: a heterozygous variant p.[G51A];[=] in RHO and a homozygous pathogenic variant p.[R311Q];[R311Q] in NR2E3. Helicoid subretinal fibrosis associated with recessive NR2E3 variant p.[R311Q];[R311Q] was identified in F2. A new frameshift variant c.[105delG];[105delG] in RDH12 was found in F3 with cone-rod dystrophy. In F4, the compound heterozygous variants p.[R964*];[W758*] were observed in IMPG2 with a retinitis pigmentosa (RP) phenotype. We showed that both affected parents and the offspring, were homozygous for the same variants in all four families. Our results provide evidence that in consanguineous families, autosomal recessive can be transmitted as pseudodominant inheritance in RD patients, and further extend our knowledge of pathogenic variants in RD genes.


First submicroscopic inversion of the OPA1 gene identified in dominant optic atrophy - a case report.

  • Nicole Weisschuh‎ et al.
  • BMC medical genetics‎
  • 2020‎

Dominant optic atrophy (DOA) is an inherited optic neuropathy that mainly affects visual acuity, central visual fields and color vision due to a progressive loss of retinal ganglion cells and their axons that form the optic nerve. Approximately 45-90% of affected individuals with DOA harbor pathogenic variants in the OPA1 gene. The mutation spectrum of OPA1 comprises nonsense, canonical and non-canonical splice site, frameshift and missense as well as copy number variants, but intragenic inversions have not been reported so far.


New COL6A6 Variant Causes Autosomal Dominant Retinitis Pigmentosa in a Four-Generation Family.

  • Veronika Vaclavik‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2022‎

To report that variants in the gene for a large lamina basal component protein, COL6A6 (collagen type VI alpha 6 chain, Col6α6), linked to chromosome 3p22.1 causes retinitis pigmentosa (RP) in patients with autosomal dominant transmission (adRP).


Dominant ACO2 mutations are a frequent cause of isolated optic atrophy.

  • Majida Charif‎ et al.
  • Brain communications‎
  • 2021‎

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.


Diagnostic genome sequencing improves diagnostic yield: a prospective single-centre study in 1000 patients with inherited eye diseases.

  • Nicole Weisschuh‎ et al.
  • Journal of medical genetics‎
  • 2024‎

Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION).


Mutations in the cone photoreceptor G-protein alpha-subunit gene GNAT2 in patients with achromatopsia.

  • Susanne Kohl‎ et al.
  • American journal of human genetics‎
  • 2002‎

Achromatopsia is an autosomal recessively inherited visual disorder that is present from birth and that features the absence of color discrimination. We here report the identification of five independent families with achromatopsia that segregate protein-truncation mutations in the GNAT2 gene, located on chromosome 1p13. GNAT2 encodes the cone photoreceptor-specific alpha-subunit of transducin, a G-protein of the phototransduction cascade, which couples to the visual pigment(s). Our results demonstrate that GNAT2 is the third gene implicated in achromatopsia.


Autophagy defect is associated with low glucose-induced apoptosis in 661W photoreceptor cells.

  • Delphine Balmer‎ et al.
  • PloS one‎
  • 2013‎

Glucose is an important metabolic substrate of the retina and diabetic patients have to maintain a strict normoglycemia to avoid diabetes secondary effects, including cardiovascular disease, nephropathy, neuropathy and retinopathy. Others and we recently demonstrated the potential role of hypoglycemia in diabetic retinopathy. We showed acute hypoglycemia to induce retinal cell death both in vivo during an hyperinsulinemic/hypoglycemic clamp and in vitro in 661W photoreceptor cells cultured at low glucose concentration. In the present study, we showed low glucose to induce a decrease of BCL2 and BCL-XL anti-apoptotic proteins expression, leading to an increase of free pro-apoptotic BAX. In parallel, we showed that, in retinal cells, low glucose-induced apoptosis is involved in the process of autophagosomes formation through the AMPK/RAPTOR/mTOR pathway. Moreover, the decrease of LAMP2a expression led to a defect in the autophagosome/lysosome fusion process. Specific inhibition of autophagy, either by 3-methyladenine or by down-regulation of ATG5 or ATG7 proteins expression, increased caspase 3 activation and 661W cell death. We show that low glucose modifies the delicate equilibrium between apoptosis and autophagy. Cells struggled against low nutrient condition-induced apoptosis by starting an autophagic process, which led to cell death when inhibited. We conclude that autophagy defect is associated with low glucose-induced 661W cells death that could play a role in diabetic retinopathy. These results could modify the way of addressing negative effects of hypoglycemia. Short-term modulation of autophagy could be envisioned to treat diabetic patients in order to avoid secondary complications of the disease.


Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma.

  • Jessica N Cooke Bailey‎ et al.
  • Nature genetics‎
  • 2016‎

Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. To identify new susceptibility loci, we performed meta-analysis on genome-wide association study (GWAS) results from eight independent studies from the United States (3,853 cases and 33,480 controls) and investigated the most significantly associated SNPs in two Australian studies (1,252 cases and 2,592 controls), three European studies (875 cases and 4,107 controls) and a Singaporean Chinese study (1,037 cases and 2,543 controls). A meta-analysis of the top SNPs identified three new associated loci: rs35934224[T] in TXNRD2 (odds ratio (OR) = 0.78, P = 4.05 × 10(-11)) encoding a mitochondrial protein required for redox homeostasis; rs7137828[T] in ATXN2 (OR = 1.17, P = 8.73 × 10(-10)); and rs2745572[A] upstream of FOXC1 (OR = 1.17, P = 1.76 × 10(-10)). Using RT-PCR and immunohistochemistry, we show TXNRD2 and ATXN2 expression in retinal ganglion cells and the optic nerve head. These results identify new pathways underlying POAG susceptibility and suggest new targets for preventative therapies.


Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing.

  • Nicole Weisschuh‎ et al.
  • PloS one‎
  • 2016‎

Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.


Novel C8orf37 mutations cause retinitis pigmentosa in consanguineous families of Pakistani origin.

  • Zeinab Ravesh‎ et al.
  • Molecular vision‎
  • 2015‎

To investigate the molecular basis of retinitis pigmentosa in two consanguineous families of Pakistani origin with multiple affected members.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: