Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity.

  • Elisabeth Hodille‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO's potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy.


Roles of paxillin family members in adhesion and ECM degradation coupling at invadosomes.

  • Christos Petropoulos‎ et al.
  • The Journal of cell biology‎
  • 2016‎

Invadosomes are acto-adhesive structures able to both bind the extracellular matrix (ECM) and digest it. Paxillin family members-paxillin, Hic-5, and leupaxin-are implicated in mechanosensing and turnover of adhesion sites, but the contribution of each paxillin family protein to invadosome activities is unclear. We use genetic approaches to show that paxillin and Hic-5 have both redundant and distinctive functions in invadosome formation. The essential function of paxillin-like activity is based on the coordinated activity of LD motifs and LIM domains, which support invadosome assembly and morphology, respectively. However, paxillin preferentially regulates invadosome assembly, whereas Hic-5 regulates the coupling between ECM degradation and acto-adhesive functions. Mass spectrometry analysis revealed new partners that are important for paxillin and Hic-5 specificities: paxillin regulates the acto-adhesive machinery through janus kinase 1 (JAK1), whereas Hic-5 controls ECM degradation via IQGAP1. Integrating the redundancy and specificities of paxillin and Hic-5 in a functional complex provides insights into the coupling between the acto-adhesive and ECM-degradative machineries in invadosomes.


Mmi1 RNA surveillance machinery directs RNAi complex RITS to specific meiotic genes in fission yeast.

  • Edwige Hiriart‎ et al.
  • The EMBO journal‎
  • 2012‎

RNA interference (RNAi) silences gene expression by acting both at the transcriptional and post-transcriptional levels in a broad range of eukaryotes. In the fission yeast Schizosaccharomyces pombe the RNA-Induced Transcriptional Silencing (RITS) RNAi complex mediates heterochromatin formation at non-coding and repetitive DNA. However, the targeting and role of RITS at other genomic regions, including protein-coding genes, remain unknown. Here we show that RITS localizes to specific meiotic genes and mRNAs. Remarkably, RITS is guided to these meiotic targets by the RNA-binding protein Mmi1 and its associated RNA surveillance machinery that together degrade selective meiotic mRNAs during vegetative growth. Upon sexual differentiation, RITS localization to the meiotic genes and mRNAs is lost. Large-scale identification of Mmi1 RNA targets reveals that RITS subunit Chp1 associates with the vast majority of them. In addition, loss of RNAi affects the effective repression of sexual differentiation mediated by the Mmi1 RNA surveillance machinery. These findings uncover a new mechanism for recruiting RNAi to specific meiotic genes and suggest that RNAi participates in the control of sexual differentiation in fission yeast.


Quantitative Proteomic Approach Reveals Altered Metabolic Pathways in Response to the Inhibition of Lysine Deacetylases in A549 Cells under Normoxia and Hypoxia.

  • Alfonso Martín-Bernabé‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.


Selective termination of lncRNA transcription promotes heterochromatin silencing and cell differentiation.

  • Leila Touat-Todeschini‎ et al.
  • The EMBO journal‎
  • 2017‎

Long non-coding RNAs (lncRNAs) regulating gene expression at the chromatin level are widespread among eukaryotes. However, their functions and the mechanisms by which they act are not fully understood. Here, we identify new fission yeast regulatory lncRNAs that are targeted, at their site of transcription, by the YTH domain of the RNA-binding protein Mmi1 and degraded by the nuclear exosome. We uncover that one of them, nam1, regulates entry into sexual differentiation. Importantly, we demonstrate that Mmi1 binding to this lncRNA not only triggers its degradation but also mediates its transcription termination, thus preventing lncRNA transcription from invading and repressing the downstream gene encoding a mitogen-activated protein kinase kinase kinase (MAPKKK) essential to sexual differentiation. In addition, we show that Mmi1-mediated termination of lncRNA transcription also takes place at pericentromeric regions where it contributes to heterochromatin gene silencing together with RNA interference (RNAi). These findings reveal an important role for selective termination of lncRNA transcription in both euchromatic and heterochromatic lncRNA-based gene silencing processes.


Endogenous HLA-DQ8αβ programs superantigens (SEG/SEI) to silence toxicity and unleash a tumoricidal network with long-term melanoma survival.

  • Peter Knopick‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

As the most powerful T cell agonists known, superantigens (SAgs) have enormous potential for cancer immunotherapy. Their development has languished due to high incidence (60%-80%) of seroreactive neutralizing antibodies in humans and tumor necrosis factor-α (TNFα)-mediated cardiopulmonary toxicity. Such toxicity has narrowed their therapeutic index while neutralizing antibodies have nullified their therapeutic effects.


HDAC6-ubiquitin interaction controls the duration of HSF1 activation after heat shock.

  • Lydia Pernet‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

After heat shock, HSF1 controls a major cellular transcriptional response involving the activation of early (HSP70) and late (HSP25) heat shock gene expression. Here we show that a full response to heat shock (activation of both HSP70 and HSP25) depends on the duration of HSF1 activation, which is itself controlled by HDAC6, a unique deacetylase known to bind monoubiquitin and polyubiquitin with high affinity. On the basis of a comparative analysis of the heat shock response in cells knocked out for HDAC6 or expressing HDAC6 mutants, we show that HDAC6 binding to ubiquitinated proteins controls the duration of HSF1 activation after heat shock. In cells expressing HDAC6 mutated in the ubiquitin-binding domain, the AAA ATPase factor p97/VCP mediates rapid inactivation of HSF1, precluding late activation of the HSP25 gene. In these cells, knockdown of p97/VCP rescues HSF1 from this rapid inactivation and restores HSP25 expression. We present here a new regulatory circuit that adjusts the duration of the heat shock response to the extent of protein ubiquitination after heat shock.


Nuclear envelope deformation controls cell cycle progression in response to mechanical force.

  • Julien Aureille‎ et al.
  • EMBO reports‎
  • 2019‎

The shape of the cell nucleus can vary considerably during developmental and pathological processes; however, the impact of nuclear morphology on cell behavior is not known. Here, we observed that the nuclear envelope flattens as cells transit from G1 to S phase and inhibition of myosin II prevents nuclear flattening and impedes progression to S phase. Strikingly, we show that applying compressive force on the nucleus in the absence of myosin II-mediated tension is sufficient to restore G1 to S transition. Using a combination of tools to manipulate nuclear morphology, we observed that nuclear flattening activates a subset of transcription factors, including TEAD and AP1, leading to transcriptional induction of target genes that promote G1 to S transition. In addition, we found that nuclear flattening mediates TEAD and AP1 activation in response to ROCK-generated contractility or cell spreading. Our results reveal that the nuclear envelope can operate as a mechanical sensor whose deformation controls cell growth in response to tension.


Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II.

  • Pratibha Bhalla‎ et al.
  • Gene‎
  • 2019‎

Eukaryotic transcription is a highly regulated fundamental life process. A large number of regulatory proteins and complexes, many of them with sequence-specific DNA-binding activity are known to influence transcription by RNA polymerase (pol) II with a fine precision. In comparison, only a few regulatory proteins are known for pol III, which transcribes genes encoding small, stable, non-translated RNAs. The pol III transcription is precisely regulated under various stress conditions. We used pol III transcription complex (TC) components TFIIIC (Tfc6), pol III (Rpc128) and TFIIIB (Brf1) as baits and mass spectrometry to identify their potential interactors in vivo. A large interactome constituting chromatin modifiers, regulators and factors of transcription by pol I and pol II supports the possibility of a crosstalk between the three transcription machineries. The association of proteins and complexes involved in various basic life processes like ribogenesis, RNA processing, protein folding and degradation, DNA damage response, replication and transcription underscores the possibility of the pol III TC serving as a signaling hub for communication between the transcription and other cellular physiological activities under normal growth conditions. We also found an equally large number of proteins and complexes interacting with the TC under nutrient starvation condition, of which at least 25% were non-identical under the two conditions. The data reveal the possibility of a large number of signaling cues for pol III transcription against adverse conditions, necessary for an efficient co-ordination of various cellular functions.


Reductive evolution of virulence repertoire to drive the divergence between community- and hospital-associated methicillin-resistant Staphylococcus aureus of the ST1 lineage.

  • Marina Farrel Côrtes‎ et al.
  • Virulence‎
  • 2021‎

Methicillin-resistant Staphylococcus aureus (MRSA) of the ST1-SCCmecIV lineage has been associated with community-acquired (CA) infections in North America and Australia. In Brazil, multi-drug resistant ST1-SCCmecIV MRSA has emerged in hospital-associated (HA) diseases in Rio de Janeiro. To understand these epidemiological differences, genomic and phylogenetic analyses were performed. In addition, virulence assays were done for representative CA - and HA-MRSA strains. Despite the conservation of the virulence repertoire, some genes were missing in Brazilian ST1-SCCmecIV including lukSF-PV, fnbB, and several superantigen-encoded genes. Additionally, CA-MRSA lost the splDE while HA-MRSA strains conserved the complete operon. Most of these variable genes were located in mobile genetic elements (MGE). However, conservation and maintenance of MGEs were often observed despite the absence of their associated virulence markers. A Bayesian phylogenetic tree revealed the occurrence of more than one entrance of ST1 strains in Rio de Janeiro. The tree shape and chronology allowed us to infer that the hospital-associated ST1-SCCmecIV from Brazil and the community-acquired USA400 from North America are not closely related and that they might have originated from different MSSA strains that independently acquired SCCmecIV cassettes. As expected, representatives of ST1 strains from Brazil showed lower cytotoxicity and a greater ability to survive inside human host cells. We suggest that Brazilian ST1-SCCmecIV strains have adapted to the hospital setting by reducing virulence and gaining the ability to persist and survive inside host cells. Possibly, these evolutionary strategies may balance the biologic cost of retaining multiple antibiotic resistance genes.


Cross-talk between the calcium channel TRPV4 and reactive oxygen species interlocks adhesive and degradative functions of invadosomes.

  • Sanela Vellino‎ et al.
  • The Journal of cell biology‎
  • 2021‎

Invadosomes support cell invasion by coupling both acto-adhesive and extracellular matrix degradative functions, which are apparently antagonistic. β1-integrin dynamics regulate this coupling, but the actual sensing mechanism and effectors involved have not yet been elucidated. Using genetic and reverse genetic approaches combined with biochemical and imaging techniques, we now show that the calcium channel TRPV4 colocalizes with β1-integrins at the invadosome periphery and regulates its activation and the coupling of acto-adhesive and degradative functions. TRPV4-mediated regulation of podosome function depends on its ability to sense reactive oxygen species (ROS) in invadosomes' microenvironment and involves activation of the ROS/calcium-sensitive kinase Ask1 and binding of the motor MYO1C. Furthermore, disease-associated TRPV4 gain-of-function mutations that modulate ECM degradation are also implicated in the ROS response, which provides new perspectives in our understanding of the pathophysiology of TRPV4 channelopathies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: