Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Virus-Induced Changes in mRNA Secondary Structure Uncover cis-Regulatory Elements that Directly Control Gene Expression.

  • Orel Mizrahi‎ et al.
  • Molecular cell‎
  • 2018‎

mRNAs carry two layers of information, the genetic code and the information that dictates their post-transcriptional fate. The latter function relies on a complex interplay between cis-elements and trans-regulators, and unbiased identification of these elements is still challenging. To identify cis-elements that control gene expression, we use dimethyl sulfate (DMS) mutational profiling with sequencing and map changes in mRNA secondary structure following viral infection. Our dynamic structural data reveal a major role for ribosomes in unwinding secondary structures, which is further supported by the relationship we uncover between structure and translation efficiency. Moreover, our analysis revealed dozens of regions in viral and cellular mRNAs that exhibit changes in secondary structure. In-depth analysis of these regions reveals cis-elements in 3' UTRs that regulate mRNA stability and elements within coding sequences that control translation. Overall, our study demonstrates how mapping dynamic changes in mRNA structure allows unbiased identification of functional regulatory elements.


LARP4 is an RNA-binding protein that binds nuclear-encoded mitochondrial mRNAs to promote mitochondrial function.

  • Benjamin M Lewis‎ et al.
  • RNA (New York, N.Y.)‎
  • 2024‎

Mitochondria-associated RNA-binding proteins (RBPs) have emerged as key contributors to mitochondrial biogenesis and homeostasis. With few examples known, we set out to identify RBPs that regulate nuclear-encoded mitochondrial mRNAs (NEMmRNAs). Our systematic analysis of RNA targets of 150 RBPs identified RBPs with a preference for binding NEMmRNAs, including LARP4, a La RBP family member. We show that LARP4's targets are particularly enriched in mRNAs that encode respiratory chain complex proteins (RCCPs) and mitochondrial ribosome proteins (MRPs) across multiple human cell lines. Through quantitative proteomics, we demonstrate that depletion of LARP4 leads to a significant reduction in RCCP and MRP protein levels. Furthermore, we show that LARP4 depletion reduces mitochondrial function, and that LARP4 re-expression rescues this phenotype. Our findings shed light on a novel function for LARP4 as an RBP that binds to and positively regulates NEMmRNAs to promote mitochondrial respiratory function.


DAP5 drives translation of specific mRNA targets with upstream ORFs in human embryonic stem cells.

  • Maya David‎ et al.
  • RNA (New York, N.Y.)‎
  • 2022‎

Death associated protein 5 (DAP5/eIF4G2/NAT1) is a member of the eIF4G translation initiation factors that has been shown to mediate noncanonical and/or cap-independent translation. It is essential for embryonic development and for differentiation of embryonic stem cells (ESCs), specifically its ability to drive translation of specific target mRNAs. In order to expand the repertoire of DAP5 target mRNAs, we compared ribosome profiles in control and DAP5 knockdown (KD) human ESCs (hESCs) to identify mRNAs with decreased ribosomal occupancy upon DAP5 silencing. A cohort of 68 genes showed decreased translation efficiency in DAP5 KD cells. Mass spectrometry confirmed decreased protein abundance of a significant portion of these targets. Among these was KMT2D, a histone methylase previously shown to be essential for ESC differentiation and embryonic development. We found that nearly half of the cohort of DAP5 target mRNAs displaying reduced translation efficiency of their main coding sequences upon DAP5 KD contained upstream open reading frames (uORFs) that are actively translated independently of DAP5. This is consistent with previously suggested mechanisms by which DAP5 mediates leaky scanning through uORFs and/or reinitiation at the main coding sequence. Crosslinking protein-RNA immunoprecipitation experiments indicated that a significant subset of DAP5 mRNA targets bound DAP5, indicating that direct binding between DAP5 protein and its target mRNAs is a frequent but not absolute requirement for DAP5-dependent translation of the main coding sequence. Thus, we have extended DAP5's function in translation of specific mRNAs in hESCs by a mechanism allowing translation of the main coding sequence following upstream translation of short ORFs.


Autologous and Heterologous Cell Therapy for Hemophilia B toward Functional Restoration of Factor IX.

  • Suvasini Ramaswamy‎ et al.
  • Cell reports‎
  • 2018‎

Hemophilia B is an ideal target for gene- and cell-based therapies because of its monogenic nature and broad therapeutic index. Here, we demonstrate the use of cell therapy as a potential long-term cure for hemophilia B in our FIX-deficient mouse model. We show that transplanted, cryopreserved, cadaveric human hepatocytes remain functional for more than a year and secrete FIX at therapeutic levels. Hepatocytes from different sources (companies and donors) perform comparably in curing the bleeding defect. We also generated induced pluripotent stem cells (iPSCs) from two hemophilia B patients and corrected the disease-causing mutations in them by two different approaches (mutation specific and universal). These corrected iPSCs were differentiated into hepatocyte-like cells (HLCs) and transplanted into hemophilic mice. We demonstrate these iPSC-HLCs to be viable and functional in mouse models for 9-12 months. This study aims to establish the use of cells from autologous and heterologous sources to treat hemophilia B.


RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure.

  • Oz Solomon‎ et al.
  • Nature communications‎
  • 2017‎

Adenosine deaminase acting on RNA 1 (ADAR1) is the master RNA editor, catalyzing the deamination of adenosine to inosine. RNA editing is vital for preventing abnormal activation of cytosolic nucleic acid sensing pathways by self-double-stranded RNAs. Here we determine, by parallel analysis of RNA secondary structure sequencing (PARS-seq), the global RNA secondary structure changes in ADAR1 deficient cells. Surprisingly, ADAR1 silencing resulted in a lower global double-stranded to single-stranded RNA ratio, suggesting that A-to-I editing can stabilize a large subset of imperfect RNA duplexes. The duplexes destabilized by editing are composed of vastly complementary inverted Alus found in untranslated regions of genes performing vital biological processes, including housekeeping functions and type-I interferon responses. They are predominantly cytoplasmic and generally demonstrate higher ribosomal occupancy. Our findings imply that the editing effect on RNA secondary structure is context dependent and underline the intricate regulatory role of ADAR1 on global RNA secondary structure.


Structural variants drive context-dependent oncogene activation in cancer.

  • Zhichao Xu‎ et al.
  • Nature‎
  • 2022‎

Higher-order chromatin structure is important for the regulation of genes by distal regulatory sequences1,2. Structural variants (SVs) that alter three-dimensional (3D) genome organization can lead to enhancer-promoter rewiring and human disease, particularly in the context of cancer3. However, only a small minority of SVs are associated with altered gene expression4,5, and it remains unclear why certain SVs lead to changes in distal gene expression and others do not. To address these questions, we used a combination of genomic profiling and genome engineering to identify sites of recurrent changes in 3D genome structure in cancer and determine the effects of specific rearrangements on oncogene activation. By analysing Hi-C data from 92 cancer cell lines and patient samples, we identified loci affected by recurrent alterations to 3D genome structure, including oncogenes such as MYC, TERT and CCND1. By using CRISPR-Cas9 genome engineering to generate de novo SVs, we show that oncogene activity can be predicted by using 'activity-by-contact' models that consider partner region chromatin contacts and enhancer activity. However, activity-by-contact models are only predictive of specific subsets of genes in the genome, suggesting that different classes of genes engage in distinct modes of regulation by distal regulatory elements. These results indicate that SVs that alter 3D genome organization are widespread in cancer genomes and begin to illustrate predictive rules for the consequences of SVs on oncogene activation.


Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs.

  • Amy L Firth‎ et al.
  • Cell reports‎
  • 2015‎

Lung disease is a major cause of death in the United States, with current therapeutic approaches serving only to manage symptoms. The most common chronic and life-threatening genetic disease of the lung is cystic fibrosis (CF) caused by mutations in the cystic fibrosis transmembrane regulator (CFTR). We have generated induced pluripotent stem cells (iPSCs) from CF patients carrying a homozygous deletion of F508 in the CFTR gene, which results in defective processing of CFTR to the cell membrane. This mutation was precisely corrected using CRISPR to target corrective sequences to the endogenous CFTR genomic locus, in combination with a completely excisable selection system, which significantly improved the efficiency of this correction. The corrected iPSCs were subsequently differentiated to mature airway epithelial cells where recovery of normal CFTR expression and function was demonstrated. This isogenic iPSC-based model system for CF could be adapted for the development of new therapeutic approaches.


Drosophila muller f elements maintain a distinct set of genomic properties over 40 million years of evolution.

  • Wilson Leung‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.


The Drosophila BTB domain protein Jim Lovell has roles in multiple larval and adult behaviors.

  • Sonia M Bjorum‎ et al.
  • PloS one‎
  • 2013‎

Innate behaviors have their origins in the specification of neural fates during development. Within Drosophila, BTB (Bric-a-brac,Tramtrack, Broad) domain proteins such as Fruitless are known to play key roles in the neural differentiation underlying such responses. We previously identified a gene, which we have termed jim lovell (lov), encoding a BTB protein with a role in gravity responses. To understand more fully the behavioral roles of this gene we have investigated its function through several approaches. Transcript and protein expression patterns have been examined and behavioral phenotypes of new lov mutations have been characterized. Lov is a nuclear protein, suggesting a role as a transcriptional regulator, as for other BTB proteins. In late embryogenesis, Lov is expressed in many CNS and PNS neurons. An examination of the PNS expression indicates that lov functions in the late specification of several classes of sensory neurons. In particular, only two of the five abdominal lateral chordotonal neurons express Lov, predicting functional variation within this highly similar group. Surprisingly, Lov is also expressed very early in embryogenesis in ways that suggests roles in morphogenetic movements, amnioserosa function and head neurogenesis. The phenotypes of two new lov mutations that delete adjacent non-coding DNA regions are strikingly different suggesting removal of different regulatory elements. In lov(47) , Lov expression is lost in many embryonic neurons including the two lateral chordotonal neurons. lov(47) mutant larvae show feeding and locomotor defects including spontaneous backward movement. Adult lov(47) males perform aberrant courtship behavior distinguished by courtship displays that are not directed at the female. lov(47) adults also show more defective negative gravitaxis than the previously isolated lov(91Y) mutant. In contrast, lov(66) produces largely normal behavior but severe female sterility associated with ectopic lov expression in the ovary. We propose a negative regulatory role for the DNA deleted in lov(66) .


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: