Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 935 papers

Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system.

  • Daichao Xu‎ et al.
  • eLife‎
  • 2015‎

Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells.


Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum.

  • Jigang Wang‎ et al.
  • Nature communications‎
  • 2015‎

The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing.


LncRNA RSU1P2 contributes to tumorigenesis by acting as a ceRNA against let-7a in cervical cancer cells.

  • Qian Liu‎ et al.
  • Oncotarget‎
  • 2017‎

Long non-coding RNAs (lncRNAs) can regulate gene expression at different levels and are widely participate in various physiological and pathological processes. Emerging evidences suggests that a number of differentially expressed lncRNAs are involved in tumorigenesis. However, the function and expression regulation of a vast majority of these unique RNAs is little known. Here, we found that the lncRNA Ras suppressor protein 1 pseudogene 2 (RSU1P2) is upregulateded in cervical cancer tissues and has a tumour-promoting role. We revealed that RSU1P2 acts as a competitive endogenous RNA (ceRNA) through regulating the expression of IGF1R, N-myc and EphA4. The mechanism of this regulation is via competition for the shared microRNA let-7a. This competition promotes the malignant phenotype of cervical carcinoma cells. The transcription factor N-myc forms a positive feedback loop with RSU1P2 by in turn activating its expression, thereby enhancing its oncogenic capacity. Hence, cancer-selective targeting of RSU1P2 could have strong benefits.


miR-23a promotes IKKα expression but suppresses ST7L expression to contribute to the malignancy of epithelial ovarian cancer cells.

  • Zhen Yang‎ et al.
  • British journal of cancer‎
  • 2016‎

Dysregulation of microRNAs (miRNAs) has been found in human epithelial ovarian cancer (EOC). However, the role and mechanism of action of miR-23a in EOC remain unclear.


Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway.

  • Min Liu‎ et al.
  • Scientific reports‎
  • 2015‎

The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future.


Cognitive improvement of compound danshen in an Aβ25-35 peptide-induced rat model of Alzheimer's disease.

  • Min Liu‎ et al.
  • BMC complementary and alternative medicine‎
  • 2015‎

Senile dementia mainly includes Alzheimer' s disease (AD) and vascular dementia (VD). AD is a progressive and irreversible neurodegenerative disorder that is accompanied with a great deal of social burden. The aim of this study was to investigate the effect of Compound Danshen (CDS) on learning and memory of alzheimer's disease (AD) rat model, as well as to explore the possible connection between CDS and the associated molecules of amyloid beta (Aβ).


Cep70 overexpression stimulates pancreatic cancer by inducing centrosome abnormality and microtubule disorganization.

  • Songbo Xie‎ et al.
  • Scientific reports‎
  • 2016‎

The centrosome is crucial for mitotic fidelity, and centrosome aberrations are associated with genomic instability and tumorigenesis. The centrosomal protein Cep70 has been reported to play a role in various cellular activities. However, whether this protein is involved in pathological processes remains unknown. In this study, we demonstrate that Cep70 is highly expressed in pancreatic cancer tissues. Cep70 expression correlates with clinicopathological parameters of pancreatic cancer, including histological grade, pathological tumor node metastasis stage, lymph node metastasis, and carbohydrate antigen 19-9 level. Depletion of Cep70 significantly suppresses pancreatic cancer cell proliferation and promotes apoptotic cell death, and exogenous expression of Cep70 can rescue the above effects. Cep70 also stimulates colony formation in soft agar and enhances tumor growth in mice. Our data further show that ectopic expression of Cep70 in pancreatic cancer cells results in the mislocalization of centrosomal proteins, including γ-tubulin and pericentrin, and the formation of intracellular aggregates. In addition, Cep70 overexpression leads to microtubule disorganization and the formation of multipolar spindles during mitosis. Our study thus unravels a critical role for Cep70 in pancreatic cancer and suggests Cep70 as a potential biomarker and therapeutic target for this deadly disease.


A specific plasminogen activator inhibitor-1 antagonist derived from inactivated urokinase.

  • Lihu Gong‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2016‎

Fibrinolysis is a process responsible for the dissolution of formed thrombi to re-establish blood flow after thrombus formation. Plasminogen activator inhibitor-1 (PAI-1) inhibits urokinase-type and tissue-type plasminogen activator (uPA and tPA) and is the major negative regulator of fibrinolysis. Inhibition of PAI-1 activity prevents thrombosis and accelerates fibrinolysis. However, a specific antagonist of PAI-1 is currently unavailable for therapeutic use. We screened a panel of uPA variants with mutations at and near the active site to maximize their binding to PAI-1 and identified a potent PAI-1 antagonist, PAItrap. PAItrap is the serine protease domain of urokinase containing active-site mutation (S195A) and four additional mutations (G37bR-R217L-C122A-N145Q). PAItrap inhibits human recombinant PAI-1 with high potency (Kd = 0.15 nM) and high specificity. In vitro using human plasma, PAItrap showed significant thrombolytic activity by inhibiting endogenous PAI-1. In addition, PAItrap inhibits both human and murine PAI-1, allowing the evaluation in murine models. In vivo, using a laser-induced thrombosis mouse model in which thrombus formation and fibrinolysis are monitored by intravital microscopy, PAItrap reduced fibrin generation and inhibited platelet accumulation following vascular injury. Therefore, this work demonstrates the feasibility to generate PAI-1 inhibitors using inactivated urokinase.


Efficacy and safety of testosterone replacement therapy in men with hypogonadism: A meta-analysis study of placebo-controlled trials.

  • Changcheng Guo‎ et al.
  • Experimental and therapeutic medicine‎
  • 2016‎

The purpose of the present meta-analysis was to evaluate the efficacy and safety of testosterone replacement therapy in men with hypogonadism. A search was conducted for appropriate randomized controlled trials and the data from 16 trials were pooled. The intended primary outcome of the present study was to determine the efficacy and safety of testosterone replacement therapy. The current data demonstrated that scores for Aging Male Symptoms (AMS) were significantly reduced following testosterone replacement therapy, with a mean decrease in AMS score of 1.52 [95% confidence interval (CI), 0.72 to 2.32; P=0.0002]. Testosterone replacement therapy increased lean body mass [mean difference (MD), 1.22; 95% CI, 0.33 to 2.11; P=0.007], reduced fat mass in a non-significantly manner (MD, -0.85; 95% CI, -1.74 to 0.04; P=0.06) and significantly reduced total cholesterol (MD, -0.16; 95% CI, -0.29 to -0.03; P=0.01). No significant differences were identified in body weight (MD, 0.09; 95% CI, -1.13 to 1.31; P=0.89), body mass index (MD, 0.10; 95% CI, -0.62 to 0.82; P=0.78) or bone mineral density (MD, -0.01; 95% CI, -0.03 to 0.02; P=0.60). Average prostate volume increased (MD, 1.58; 95% CI, 0.6 to 2.56; P=0.002) following testosterone replacement therapy, but the levels of prostate-specific antigen (PSA) (MD, 0.10; 95% CI, -0.03 to 0.22; P=0.14) and the International Prostate Symptom Scores (MD, 0.01; 95% CI, -0.37 to 0.39; P=0.96) did not change. In conclusion, testosterone replacement therapy improves quality of life, increases lean body mass, significantly decreases total cholesterol, and is well-tolerated and safe for men with hypogonadism who are exhibiting PSA levels of <4 ng/ml.


Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

  • Xiaomeng Liu‎ et al.
  • Endocrinology‎
  • 2015‎

Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT.


Knockdown of glutamate cysteine ligase catalytic subunit by siRNA causes the gold nanoparticles-induced cytotoxicity in lung cancer cells.

  • Min Liu‎ et al.
  • PloS one‎
  • 2015‎

Gold nanoparticles (GNPs) have shown promising medical applications in cancer treatment involved in the regulation of intracellular redox balance. Previously, we have reported that GNPs can trigger apoptosis and necrosis in human lung cancer cells (A549) when L-buthionine-sulfoximine (BSO) was used to decrease the expression of intracellular glutathione (GSH). Herein, we investigated the cytotoxicity of GNPs toward lung cancer cells under the glutamate cysteine ligase catalytic subunit (GCLC) was silenced by siRNA. Our results showed that GNPs cause apoptosis and necrosis in cells transfected with GCLC siRNA by elevating intracellular reactive oxygen species (ROS). These findings demonstrated that the regulation of glutathione synthesis by GCLC siRNA in A549 cells can initiate the gold nanoparticles-induced cytotoxicity.


Cep70 regulates microtubule stability by interacting with HDAC6.

  • Xingjuan Shi‎ et al.
  • FEBS letters‎
  • 2015‎

Microtubules, highly dynamic components of the cytoskeleton, are involved in mitosis, cell migration and intracellular trafficking. Our previous work has shown that the centrosomal protein Cep70 regulates microtubule organization and mitotic spindle orientation in mammalian cells. However, it remains elusive whether Cep70 is implicated in microtubule stability. Here we demonstrate that Cep70 enhances microtubule resistance to cold or nocodazole treatment. Our data further show that Cep70 promotes microtubule stability by regulating tubulin acetylation, and plays an important role in stabilizing microtubules. Mechanistic studies reveal that Cep70 interacts and colocalizes with histone deacetylase 6 (HDAC6) in the cytoplasm. These findings suggest that Cep70 promotes microtubule stability by interaction with HDAC6 and regulation of tubulin acetylation.


Removal of SOST or blocking its product sclerostin rescues defects in the periodontitis mouse model.

  • Yinshi Ren‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2015‎

Understanding periodontal ligament (PDL) biology and developing an effective treatment for bone and PDL damage due to periodontitis have been long-standing aims in dental medicine. Here, we first demonstrated by cell lineage tracing and mineral double-labeling approaches that murine PDL progenitor cells display a 2- and 3-fold higher mineral deposition rate than the periosteum and endosteum at the age of 4 weeks, respectively. We next proved that the pathologic changes in osteocytes (Ocys; changes from a spindle shape to round shape with a >50% reduction in the dendrite number/length, and an increase in SOST) are the key pathologic factors responsible for bone and PDL damage in periostin-null mice (a periodontitis animal model) using a newly developed 3-dimensional FITC-Imaris technique. Importantly, we proved that deleting the Sost gene (a potent inhibitor of WNT signaling) or blocking sclerostin function by using the mAb in this periodontitis model significantly restores bone and PDL defects (n = 4-5; P < 0.05). Together, identification of the key contribution of the PDL in normal alveolar bone formation, the pathologic changes of the Ocys in periodontitis bone loss, and the novel link between sclerostin and Wnt signaling in the PDL will aid future drug development in the treatment of patients with periodontitis.


Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin.

  • Denovan P Begg‎ et al.
  • Diabetes‎
  • 2015‎

Insulin detemir (DET) reduces glycemia comparably to other long-acting insulin formulations but causes less weight gain. Insulin signaling in the brain is catabolic, reducing food intake. We hypothesized that DET reduces weight gain, relative to other insulins, owing to increased transport into the central nervous system and/or increased catabolic action within the brain. Transport of DET and NPH insulin into the cerebrospinal fluid (CSF) was compared over several hours and after the administration of different doses peripherally in rats. DET and NPH had comparable saturable, receptor-mediated transport into the CSF. CSF insulin remained elevated significantly longer after intraperitoneal DET than after NPH. When administered acutely into the 3rd cerebral ventricle, both DET and NPH insulin reduced food intake and body weight at 24 h, and both food intake and body weight remained lower after DET than after NPH after 48 h. In direct comparison with another long-acting insulin, insulin glargine (GLAR), DET led to more prolonged increases in CSF insulin despite a shorter plasma half-life in both rats and mice. Additionally, peripheral DET administration reduced weight gain and increased CSF insulin compared with saline or GLAR in mice. Overall, these data support the hypothesis that DET has distinct effects on energy balance through enhanced and prolonged centrally mediated reduction of food intake.


SLO3 auxiliary subunit LRRC52 controls gating of sperm KSPER currents and is critical for normal fertility.

  • Xu-Hui Zeng‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Following entry into the female reproductive tract, mammalian sperm undergo a maturation process termed capacitation that results in competence to fertilize ova. Associated with capacitation is an increase in membrane conductance to both Ca(2+) and K(+), leading to an elevation in cytosolic Ca(2+) critical for activation of hyperactivated swimming motility. In mice, the Ca(2+) conductance (alkalization-activated Ca(2+)-permeable sperm channel, CATSPER) arises from an ensemble of CATSPER subunits, whereas the K(+) conductance (sperm pH-regulated K(+) current, KSPER) arises from a pore-forming ion channel subunit encoded by the slo3 gene (SLO3) subunit. In the mouse, both CATSPER and KSPER are activated by cytosolic alkalization and a concerted activation of CATSPER and KSPER is likely a common facet of capacitation-associated increases in Ca(2+) and K(+) conductance among various mammalian species. The properties of heterologously expressed mouse SLO3 channels differ from native mouse KSPER current. Recently, a potential KSPER auxiliary subunit, leucine-rich-repeat-containing protein 52 (LRRC52), was identified in mouse sperm and shown to shift gating of SLO3 to be more equivalent to native KSPER. Here, we show that genetic KO of LRRC52 results in mice with severely impaired fertility. Activation of KSPER current in sperm lacking LRRC52 requires more positive voltages and higher pH than for WT KSPER. These results establish a critical role of LRRC52 in KSPER channels and demonstrate that loss of a non-pore-forming auxiliary subunit results in severe fertility impairment. Furthermore, through analysis of several genotypes that influence KSPER current properties we show that in vitro fertilization competence correlates with the net KSPER conductance available for activation under physiological conditions.


Carnosol as a Nrf2 Activator Improves Endothelial Barrier Function Through Antioxidative Mechanisms.

  • Xi Li‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Oxidative stress is the main pathogenesis of diabetic microangiopathy, which can cause microvascular endothelial cell damage and destroy vascular barrier. In this study, it is found that carnosol protects human microvascular endothelial cells (HMVEC) through antioxidative mechanisms. First, we measured the antioxidant activity of carnosol. We showed that carnosol pretreatment suppressed tert-butyl hydroperoxide (t-BHP)-induced cell viability, affected the production of lactate dehydrogenase (LDH) as well as reactive oxygen species (ROS), and increased the produce of nitric oxide (NO). Additionally, carnosol promotes the protein expression of vascular endothelial cadherin (VE-cadherin) to keep the integrity of intercellular junctions, which indicated that it protected microvascular barrier in oxidative stress. Meanwhile, we investigated that carnosol can interrupt Nrf2-Keap1 protein-protein interaction and stimulated antioxidant-responsive element (ARE)-driven luciferase activity in vitro. Mechanistically, we showed that carnosol promotes the expression of heme oxygenase 1(HO-1) and nuclear factor-erythroid 2 related factor 2(Nrf2). It can also promote the expression of endothelial nitric oxide synthase (eNOS). Collectively, our data support the notion that carnosol is a protective agent in HMVECs and has the potential for therapeutic use in the treatments of microvascular endothelial cell injury.


Acute histopathological responses and long-term behavioral outcomes in mice with graded controlled cortical impact injury.

  • Si-Yi Xu‎ et al.
  • Neural regeneration research‎
  • 2019‎

While animal models of controlled cortical impact often display short-term motor dysfunction after injury, histological examinations do not show severe cortical damage. Thus, this model requires further improvement. Mice were subjected to injury at three severities using a Pin-Point™-controlled cortical impact device to establish secondary brain injury mouse models. Twenty-four hours after injury, hematoxylin-eosin staining, Fluoro-Jade B histofluorescence, and immunohistochemistry were performed for brain slices. Compared to the uninjured side, we observed differences of histopathological findings, neuronal degeneration, and glial cell number in the CA2 and CA3 regions of the hippocampus on the injured side. The Morris water maze task and beam-walking test verified long-term (14-28 days) spatial learning/memory and motor balance. To conclude, the histopathological responses were positively correlated with the degree of damage, as were the long-term behavioral manifestations after controlled cortical impact. All animal procedures were approved by the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University School of Medicine.


An analysis of plasma reveals proteins in the acute phase response pathway to be candidate diagnostic biomarkers for depression.

  • Qi Wang‎ et al.
  • Psychiatry research‎
  • 2019‎

Globally, depression is one of the most serious debilitating psychiatric mental disorders. In this study, we validated the expression levels of fibrinogen alpha (FGA), fibrinogen beta (FGB), fibrinogen gamma (FGG), Complement factor B (CFB) and serpin family D member 1(SERPIND1) in the acute phase response signaling pathway in plasma samples using enzyme-linked immunosorbent assay (ELISA).Then illuminate the roles of FGA, FGB, FGG, CFB, SERPIND1 in depression using microarray data. Gene expression dataset GSE98793 was downloaded from the Gene Expression Omnibus database. There were 128 whole blood samples included 64 patients with major depressed patients and 64 healthy controls. Differentially expressed genes (DEGs) were identified, and then protein-protein interaction (PPI) network was constructed to screen crucial genes associated with FGA, FGB, FGG, CFB and SERPIND1. Moreover, gene ontology (GO) biological processes analyses was performed. The ELISA data showed that the expression levels of FGA, FGB, FGG, CFB and SERPIND1 were up-regulated in depressed patients. The enriched GO terms were predominantly associated with the biological processes including more genes were inflammation related. The PPI network was found these five genes interacted with 11 genes. FGA, FGB, FGG, CFB and SERPIND1 may be important in the pathogenesis of depression.


EZH2 Expression is increased in BAP1-mutant renal clear cell carcinoma and is related to poor prognosis.

  • Chenmin Sun‎ et al.
  • Journal of Cancer‎
  • 2018‎

Aim: BAP1 is frequently mutated in clear cell renal cell carcinoma (ccRCC) with a definitive role still unclear. Methods: In silico analysis of BAP1-mutant and wild-type gene enrichment and functional annotation in TCGA-KIRC dataset was performed. Target gene was studied based on functional clustering and was knowledge-based. Validation using in-house pathological sections were performed immunohistochemically. In vitro and in vivo studies on target gene were performed. Results: The TCGA ccRCC dataset included 534 ccRCC samples. BAP1 was frequently mutated and more frequently downregulated in ccRCC compared to normal kidney tissue or benign renal tumors. In the analysis between samples with BAP1 mutation (N = 33) and pan-negative (N = 33), we found that cancers with BAP1 mutation was significantly enriched for 14 pathways, of which 3 were DNA repair pathways, in which EZH2 played a role. CcRCC patients with lower BAP1 expression had poor prognosis and showed higher EZH2 expression, which also conferred worsened survival. Genetic and pharmaceutical inhibition of EZH2 not only inhibited BAP1-mutatn ccRCC cell viability and invasion but also abrogated genetic replenishing of BAP1 expression. Validation cohort encompassing 62 ccRCC samples confirmed the worsened phenotype for cases with higher EZH2 expression and significant positive correlation between expressions of EZH2 and BAP1. EZH2 inhibitor also inhibited tumor growth in xenograft mouse model with BAP1-mutated ccRCC cells with unremarkable toxicity. Conclusion: CcRCC with decreased BAP1 level has poor prognosis and is associated with higher EZH2 expression. Inhibition of EZH2 in BAP1-mutated entity holds promise for further investigation.


Expression and regulation of GnRHR2 gene and testosterone secretion mediated by GnRH2 and GnRHR2 within porcine testes.

  • Haisheng Ding‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2019‎

Gonadotropin-releasing hormone 2 receptor (GnRHR2) together with its cognate ligand involves in regulating reproductive behavior. However, little is known concerning the effect of transcription factor steroidogenic factor1 (SF-1) regulation on porcine GnRHR2 gene expression and GnRH2 regulation mechanism in testosterone secretion through GnRHR2. Our study demonstrated that GnRHR2 transcription levels were high in porcine testis. Immunohistochemistry analyses showed that GnRHR2 immunoreactivity was strong in the Leydig cells in boar testes. Two SF-1 binding sites were predicted in GnRHR2 promoter and the second site (-159/-149) was considered to be important for GnRHR2 promoter activity through site-directed mutagenesis. The binding of SF-1 to GnRHR2 promoter was confirmed by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP). Overexpression and knockdown experiments revealed that SF-1 could up-regulate porcine GnRHR2 expression. DNA methylation of GnRHR2 promoter CpG island also specifically regulated GnRHR2 expression. Meanwhile, our study also demonstrated GnRH2 treatment promoted the expression of SF-1 and steroidogenic acute regulatory protein (StAR), and that this treatment stimulated cAMP responsive element binding protein (CREB) phosphorylation, regulated the expression of GnRHR2, especially that of GnRHR2-X1, and promoted testosterone secretion in porcine Leydig cells. We speculated that testosterone secretion mediated by GnRH2 and GnRHR2 (mainly GnRHR2-X1) was regulated by phosphorylated CREB interacting with SF-1 to control StAR expression. Taken together, the present study indicates that SF-1 and GnRH2 are the essential regulatory factors for GnRHR2 expression. This study also explores the regulation mechanism of testosterone secretion mediated by GnRH2 and GnRHR2 in porcine Leydig cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: