Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Extracellular Matrix and Oxidative Phosphorylation: Important Role in the Regulation of Hypothalamic Function by Gut Microbiota.

  • Xunzhong Qi‎ et al.
  • Frontiers in genetics‎
  • 2020‎

In previous studies, our team examined the gut microbiota of healthy individuals and depressed patients using fecal microbiota transplantation of germ-free (GF) mice. Our results showed that depression-like and anxiety-like behavioral phenotypes of host mice were increased, but the molecular mechanism by which gut microbiota regulate host behavioral phenotypes is still unclear.


Commensal Bacteria-Dependent CD8αβ+ T Cells in the Intestinal Epithelium Produce Antimicrobial Peptides.

  • Banru Chen‎ et al.
  • Frontiers in immunology‎
  • 2018‎

The epithelium of the intestine functions as the primary "frontline" physical barrier for protection from enteric microbiota. Intraepithelial lymphocytes (IELs) distributed along the intestinal epithelium are predominantly CD8+ T cells, among which CD8αβ+ IELs are a large population. In this investigation, the proportion and absolute number of CD8αβ+ IELs decreased significantly in antibiotic-treated and germ-free mice. Moreover, the number of CD8αβ+ IELs was correlated closely with the load of commensal microbes, and induced by specific members of commensal bacteria. Microarray analysis revealed that CD8αβ+ IELs expressed a series of genes encoding potent antimicrobial peptides (AMPs), whereas CD8αβ+ splenocytes did not. The antimicrobial activity of CD8αβ+ IELs was confirmed by an antimicrobial-activity assay. In conclusion, microbicidal CD8αβ+ IELs are regulated by commensal bacteria which, in turn, secrete AMPs that have a vital role in maintaining the homeostasis of the small intestine.


The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice.

  • Peng Zheng‎ et al.
  • Science advances‎
  • 2019‎

Schizophrenia (SCZ) is a devastating mental disorder with poorly defined underlying molecular mechanisms. The gut microbiome can modulate brain function and behaviors through the microbiota-gut-brain axis. Here, we found that unmedicated and medicated patients with SCZ had a decreased microbiome α-diversity index and marked disturbances of gut microbial composition versus healthy controls (HCs). Several unique bacterial taxa (e.g., Veillonellaceae and Lachnospiraceae) were associated with SCZ severity. A specific microbial panel (Aerococcaceae, Bifidobacteriaceae, Brucellaceae, Pasteurellaceae, and Rikenellaceae) enabled discriminating patients with SCZ from HCs with 0.769 area under the curve. Compared to HCs, germ-free mice receiving SCZ microbiome fecal transplants had lower glutamate and higher glutamine and GABA in the hippocampus and displayed SCZ-relevant behaviors similar to other mouse models of SCZ involving glutamatergic hypofunction. Together, our findings suggest that the SCZ microbiome itself can alter neurochemistry and neurologic function in ways that may be relevant to SCZ pathology.


Enterogenous bacterial glycolipids are required for the generation of natural killer T cells mediated liver injury.

  • Yingfeng Wei‎ et al.
  • Scientific reports‎
  • 2016‎

Glycolipids are potent activator of natural killer T (NKT) cells. The relationship between NKT cells and intestinal bacterial glycolipids in liver disorders remained unclear. We found that, in sharp contrast to specific pathogen-free (SPF) mice, germ-free (GF) mice are resistant to Concanavalin A (ConA)-induced liver injury. ConA treatment failed to trigger the activation of hepatic NKT cells in GF mice. These defects correlated with the sharply reduced levels of CD1d-presented glycolipid antigens in ConA-treated GF mice compared with SPF counterparts. Nevertheless, CD1d expression was similar between these two kinds of mice. The absence of intestinal bacteria did not affect the incidence of αGalCer-induced liver injury in GF mice. Importantly, we found the intestinal bacteria contain glycolipids which can be presented by CD1d and recognized by NKT cells. Furthermore, supplement of killed intestinal bacteria was able to restore ConA-mediated NKT cell activation and liver injury in GF mice. Our results suggest that glycolipid antigens derived from intestinal commensal bacteria are important hepatic NKT cell agonist and these antigens are required for the activation of NKT cells during ConA-induced liver injury. These finding provide a mechanistic explanation for the capacity of intestinal microflora to control liver inflammation.


Evaluating a potential model to analyze the function of the gut microbiota of the giant panda.

  • Wenping Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

To contribute to the conservation of endangered animals, the utilization of model systems is critical to analyze the function of their gut microbiota. In this study, the results of a fecal microbial transplantation (FMT) experiment with germ-free (GF) mice receiving giant panda or horse fecal microbiota showed a clear clustering by donor microbial communities in GF mice, which was consistent with the results of blood metabolites from these mice. At the genus level, FMT re-established approximately 9% of the giant panda donor microbiota in GF mice compared to about 32% for the horse donor microbiota. In line with this, the difference between the panda donor microbiota and panda-mice microbiota on whole-community level was significantly larger than that between the horse donor microbiota and the horse-mice microbiota. These results were consistent with source tracking analysis that found a significantly higher retention rate of the horse donor microbiota (30.9%) than the giant panda donor microbiota (4.0%) in GF mice where the microbiota remained stable after FMT. Further analyzes indicated that the possible reason for the low retention rate of the panda donor microbiota in GF mice was a low relative abundance of Clostridiaceae in the panda donor microbiota. Our results indicate that the donor microbiota has a large effect on GF mice microbiota after FMT.


Microbiota Modulate Anxiety-Like Behavior and Endocrine Abnormalities in Hypothalamic-Pituitary-Adrenal Axis.

  • Ran Huo‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2017‎

Intestinal microbes are an important system in the human body, with significant effects on behavior. An increasing body of research indicates that intestinal microbes affect brain function and neurogenesis, including sensitivity to stress. To investigate the effects of microbial colonization on behavior, we examined behavioral changes associated with hormones and hormone receptors in the hypothalamic-pituitary-adrenal (HPA) axis under stress. We tested germ-free (GF) mice and specific pathogen-free (SPF) mice, divided into four groups. A chronic restraint stress (CRS) protocol was utilized to induce external pressure in two stress groups by restraining mice in a conical centrifuge tube for 4 h per day for 21 days. After CRS, Initially, GF restraint-stressed mice explored more time than SPF restraint-stressed mice in the center and total distance of the OFT. Moreover, the CRH, ACTH, CORT, and ALD levels in HPA axis of GF restraint-stressed mice exhibited a significantly greater increase than those of SPF restraint-stressed mice. Finally, the Crhr1 mRNA levels of GF CRS mice were increased compared with SPF CRS mice. However, the Nr3c2 mRNA levels of GF CRS mice were decreased compared with SPF CRS mice. All results revealed that SPF mice exhibited more anxiety-like behavior than GF mice under the same external stress. Moreover, we also found that GF mice exhibited significant differences in, hormones, and hormone receptors compared with SPF mice. In conclusion, Imbalances of the HPA axis caused by intestinal microbes could affect the neuroendocrine system in the brain, resulting in an anxiety-like behavioral phenotype. This study suggested that intervention into intestinal microflora may provide a new approach for treating stress-related diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: