Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Misexpression of Six2 is associated with heritable frontonasal dysplasia and renal hypoplasia in 3H1 Br mice.

  • Ben Fogelgren‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2008‎

A radiation-induced mouse mutant, Brachyrrhine (Br), exhibits frontonasal dysplasia and renal hypoplasia, two malformations associated with deficiencies in mesenchymal condensation. The purpose of this study was to resolve the Br locus, evaluate possible candidate genes, and identify developmental defects in the mutant chondrocranium. Linkage analysis mapped the Br mutation to a critical region distal to D17Mit76, which contains only one gene, the transcription factor Six2. Sequence analysis of the Six2 gene, including 1.5 kb of the promoter, failed to reveal the Br mutation. However, homozygous Br/Br embryos showed almost complete absence of Six2 mRNA and protein in craniofacial and renal tissues while heterozygous Br/+ embryos displayed intermediate Six2 levels. Mutant embryos displayed malformations of neural crest-derived structures of the anterior cranium where Six2 is normally expressed. These data suggest a mutation in a novel cis-acting regulatory region inhibits Six2 expression and is associated with frontonasal dysplasia and renal hypoplasia.


Arl13b and the exocyst interact synergistically in ciliogenesis.

  • Cecília Seixas‎ et al.
  • Molecular biology of the cell‎
  • 2016‎

Arl13b belongs to the ADP-ribosylation factor family within the Ras superfamily of regulatory GTPases. Mutations in Arl13b cause Joubert syndrome, which is characterized by congenital cerebellar ataxia, hypotonia, oculomotor apraxia, and mental retardation. Arl13b is highly enriched in cilia and is required for ciliogenesis in multiple organs. Nevertheless, the precise role of Arl13b remains elusive. Here we report that the exocyst subunits Sec8, Exo70, and Sec5 bind preferentially to the GTP-bound form of Arl13b, consistent with the exocyst being an effector of Arl13b. Moreover, we show that Arl13b binds directly to Sec8 and Sec5. In zebrafish, depletion of arl13b or the exocyst subunit sec10 causes phenotypes characteristic of defective cilia, such as curly tail up, edema, and abnormal pronephric kidney development. We explored this further and found a synergistic genetic interaction between arl13b and sec10 morphants in cilia-dependent phenotypes. Through conditional deletion of Arl13b or Sec10 in mice, we found kidney cysts and decreased ciliogenesis in cells surrounding the cysts. Moreover, we observed a decrease in Arl13b expression in the kidneys from Sec10 conditional knockout mice. Taken together, our results indicate that Arl13b and the exocyst function together in the same pathway leading to functional cilia.


Deletion of Orc4 during oogenesis severely reduces polar body extrusion and blocks zygotic DNA replication†.

  • Hieu Nguyen‎ et al.
  • Biology of reproduction‎
  • 2022‎

Origin recognition complex subunit 4 (ORC4) is a DNA-binding protein required for DNA replication. During oocyte maturation, after the last oocyte DNA replication step and before zygotic DNA replication, the oocyte undergoes two meiotic cell divisions in which half the DNA is ejected in much smaller polar bodies. We previously demonstrated that ORC4 forms a cytoplasmic cage around the DNA that is ejected in both polar body extrusion (PBE) events. Here, we used ZP3 activated Cre to delete exon 7 of Orc4 during oogenesis to test how it affected both predicted functions of ORC4: its recently discovered role in PBE and its well-known role in DNA synthesis. Orc4 deletion severely reduced PBE. Almost half of Orc4-depleted germinal vesicle (GV) oocytes cultured in vitro were arrested before anaphase I (48%), and only 25% produced normal first polar bodies. This supports the role of ORC4 in PBE and suggests that transcription of the full-length Orc4 during oogenesis is required for efficient PBE. Orc4 deletion also abolished zygotic DNA synthesis. Fewer Orc4-depleted oocytes developed to the metaphase II (MII) stage, and after activation these oocytes were arrested at the two-cell stage without undergoing DNA synthesis. This confirms that transcription of full-length Orc4 after the primary follicle stage is required for zygotic DNA replication. The data also suggest that MII oocytes do not have a replication licensing checkpoint as cytokinesis progressed without DNA synthesis. Together, the data confirm that oocyte ORC4 is important for both PBE and zygotic DNA synthesis.


The exocyst gene Sec10 regulates renal epithelial monolayer homeostasis and apoptotic sensitivity.

  • Noemi Polgar‎ et al.
  • American journal of physiology. Cell physiology‎
  • 2015‎

The highly conserved exocyst protein complex regulates polarized exocytosis of subsets of secretory vesicles. A previous study reported that shRNA knockdown of an exocyst central subunit, Sec10 (Sec10-KD) in Madin-Darby canine kidney (MDCK) cells disrupted primary cilia assembly and 3D cyst formation. We used three-dimensional collagen cultures of MDCK cells to further investigate the mechanisms by which Sec10 and the exocyst regulate epithelial polarity, morphogenesis, and homeostasis. Sec10-KD cysts initially demonstrated undisturbed lumen formation although later displayed significantly fewer and shorter primary cilia than controls. Later in cystogenesis, control cells maintained normal homeostasis, while Sec10-KD cysts displayed numerous apoptotic cells extruded basally into the collagen matrix. Sec10-KD MDCK cells were also more sensitive to apoptotic triggers than controls. These phenotypes were reversed by restoring Sec10 expression with shRNA-resistant human Sec10. Apico-basal polarity appeared normal in Sec10-KD cysts, whereas mitotic spindle angles differed significantly from controls, suggesting a planar cell polarity defect. In addition, analysis of renal tubules in a newly generated kidney-specific Sec10-knockout mouse model revealed significant defects in primary cilia assembly and in the targeted renal tubules; abnormal epithelial cell extrusion was also observed, supporting our in vitro results. We hypothesize that, in Sec10-KD cells, the disrupted exocyst activity results in increased apoptotic sensitivity through defective primary cilia signaling and that, in combination with an increased basal cell extrusion rate, it affects epithelial barrier integrity and homeostasis.


A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure.

  • Keith S K Fong‎ et al.
  • Disease models & mechanisms‎
  • 2016‎

Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse.


The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes.

  • Ben Fogelgren‎ et al.
  • PLoS genetics‎
  • 2011‎

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of renal cysts that destroy the kidney. Mutations in PKD1 and PKD2, encoding polycystins-1 and -2, cause ADPKD. Polycystins are thought to function in primary cilia, but it is not well understood how these and other proteins are targeted to cilia. Here, we provide the first genetic and biochemical link between polycystins and the exocyst, a highly-conserved eight-protein membrane trafficking complex. We show that knockdown of exocyst component Sec10 yields cellular phenotypes associated with ADPKD, including loss of flow-generated calcium increases, hyperproliferation, and abnormal activation of MAPK. Sec10 knockdown in zebrafish phenocopies many aspects of polycystin-2 knockdown-including curly tail up, left-right patterning defects, glomerular expansion, and MAPK activation-suggesting that the exocyst is required for pkd2 function in vivo. We observe a synergistic genetic interaction between zebrafish sec10 and pkd2 for many of these cilia-related phenotypes. Importantly, we demonstrate a biochemical interaction between Sec10 and the ciliary proteins polycystin-2, IFT88, and IFT20 and co-localization of the exocyst and polycystin-2 at the primary cilium. Our work supports a model in which the exocyst is required for the ciliary localization of polycystin-2, thus allowing for polycystin-2 function in cellular processes.


Exocyst inactivation in urothelial cells disrupts autophagy and activates non-canonical NF-κB signaling.

  • Michael A Ortega‎ et al.
  • Disease models & mechanisms‎
  • 2022‎

Ureter obstruction is a highly prevalent event during embryonic development and is a major cause of pediatric kidney disease. We have previously reported that ureteric bud-specific ablation of the gene expressing the exocyst subunit EXOC5 in late murine gestation results in failure of urothelial stratification, cell death and complete ureter obstruction. However, the mechanistic connection between disrupted exocyst activity, urothelial cell death and subsequent ureter obstruction was unclear. Here, we report that inhibited urothelial stratification does not drive cell death during ureter development. Instead, we demonstrate that the exocyst plays a critical role in autophagy in urothelial cells, and that disruption of autophagy activates a urothelial NF-κB stress response. Impaired autophagy first provokes canonical NF-κB activity, which is progressively followed by increasing levels of non-canonical NF-κB activity and cell death if the stress remains unresolved. Furthermore, we demonstrate that ureter obstructions can be completely rescued in Exoc5 conditional knockout mice by administering a single dose of the pan-caspase inhibitor z-VAD-FMK at embryonic day 16.5 prior to urothelial cell death. Taken together, ablation of Exoc5 disrupts autophagic stress response and activates progressive NF-κB signaling, which promotes obstructive uropathy.


Disrupted glucose homeostasis and skeletal-muscle-specific glucose uptake in an exocyst knockout mouse model.

  • Brent A Fujimoto‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Skeletal muscle is responsible for the majority of glucose disposal following meals, and this is achieved by insulin-mediated trafficking of glucose transporter type 4 (GLUT4) to the cell membrane. The eight-protein exocyst trafficking complex facilitates targeted docking of membrane-bound vesicles, a process underlying the regulated delivery of fuel transporters. We previously demonstrated the role of exocyst subunit EXOC5 in insulin-stimulated GLUT4 exocytosis and glucose uptake in cultured rat skeletal myoblasts. However, the in vivo role of EXOC5 in skeletal muscle remains unclear. Using mice with inducible, skeletal-muscle-specific knockout of exocyst subunit EXOC5 (Exoc5-SMKO), we examined how muscle-specific disruption of the exocyst would affect glucose homeostasis in vivo. We found that both male and female Exoc5-SMKO mice displayed elevated fasting glucose levels. Additionally, male Exoc5-SMKO mice had impaired glucose tolerance and lower serum insulin levels. Using indirect calorimetry, we observed that male Exoc5-SMKO mice have a reduced respiratory exchange ratio during the light period and lower energy expenditure. Using the hyperinsulinemic-euglycemic clamp method, we further showed that insulin-stimulated skeletal muscle glucose uptake is reduced in Exoc5-SMKO males compared with wild-type controls. Overall, our findings indicate that EXOC5 and the exocyst are necessary for insulin-stimulated glucose uptake in skeletal muscle and regulate glucose homeostasis in vivo.


Urothelial Defects from Targeted Inactivation of Exocyst Sec10 in Mice Cause Ureteropelvic Junction Obstructions.

  • Ben Fogelgren‎ et al.
  • PloS one‎
  • 2015‎

Most cases of congenital obstructive nephropathy are the result of ureteropelvic junction obstructions, and despite their high prevalence, we have a poor understanding of their etiology and scarcity of genetic models. The eight-protein exocyst complex regulates polarized exocytosis of intracellular vesicles in a large variety of cell types. Here we report generation of a conditional knockout mouse for Sec10, a central component of the exocyst, which is the first conditional allele for any exocyst gene. Inactivation of Sec10 in ureteric bud-derived cells using Ksp1.3-Cre mice resulted in severe bilateral hydronephrosis and complete anuria in newborns, with death occurring 6-14 hours after birth. Sec10 FL/FL;Ksp-Cre embryos developed ureteropelvic junction obstructions between E17.5 and E18.5 as a result of degeneration of the urothelium and subsequent overgrowth by surrounding mesenchymal cells. The urothelial cell layer that lines the urinary tract must maintain a hydrophobic luminal barrier again urine while remaining highly stretchable. This barrier is largely established by production of uroplakin proteins that are transported to the apical surface to establish large plaques. By E16.5, Sec10 FL/FL;Ksp-Cre ureter and pelvic urothelium showed decreased uroplakin-3 protein at the luminal surface, and complete absence of uroplakin-3 by E17.5. Affected urothelium at the UPJ showed irregular barriers that exposed the smooth muscle layer to urine, suggesting this may trigger the surrounding mesenchymal cells to overgrow the lumen. Findings from this novel mouse model show Sec10 is critical for the development of the urothelium in ureters, and provides experimental evidence that failure of this urothelial barrier may contribute to human congenital urinary tract obstructions.


Adeno-Associated Virus-Mediated Gene Transfer to Renal Tubule Cells via a Retrograde Ureteral Approach.

  • Daniel C Chung‎ et al.
  • Nephron extra‎
  • 2011‎

Gene therapy involves delivery of exogenous DNA to provide a therapeutic protein. Ideally, a gene therapy vector should be non-toxic, non-immunogenic, easy to produce, and efficient in protecting and delivering DNA into target cells.


Pan-Cancer Analyses Reveal Long Intergenic Non-Coding RNAs Relevant to Tumor Diagnosis, Subtyping and Prognosis.

  • Travers Ching‎ et al.
  • EBioMedicine‎
  • 2016‎

Long intergenic noncoding RNAs (lincRNAs) are a relatively new class of non-coding RNAs that have the potential as cancer biomarkers. To seek a panel of lincRNAs as pan-cancer biomarkers, we have analyzed transcriptomes from over 3300 cancer samples with clinical information. Compared to mRNA, lincRNAs exhibit significantly higher tissue specificities that are then diminished in cancer tissues. Moreover, lincRNA clustering results accurately classify tumor subtypes. Using RNA-Seq data from thousands of paired tumor and adjacent normal samples in The Cancer Genome Atlas (TCGA), we identify six lincRNAs as potential pan-cancer diagnostic biomarkers (PCAN-1 to PCAN-6). These lincRNAs are robustly validated using cancer samples from four independent RNA-Seq data sets, and are verified by qPCR in both primary breast cancers and MCF-7 cell line. Interestingly, the expression levels of these six lincRNAs are also associated with prognosis in various cancers. We further experimentally explored the growth and migration dependence of breast and colon cancer cell lines on two of the identified lncRNAs. In summary, our study highlights the emerging role of lincRNAs as potentially powerful and biologically functional pan-cancer biomarkers and represents a significant leap forward in understanding the biological and clinical functions of lincRNAs in cancers.


Fibroproliferative response to urothelial failure obliterates the ureter lumen in a mouse model of prenatal congenital obstructive nephropathy.

  • Amanda J Lee‎ et al.
  • Scientific reports‎
  • 2016‎

Congenital obstructive nephropathy (CON) is the most prevalent cause of pediatric chronic kidney disease and end-stage renal disease. The ureteropelvic junction (UPJ) region, where the renal pelvis transitions to the ureter, is the most commonly obstructed site in CON. The underlying causes of congenital UPJ obstructions remain poorly understood, especially when they occur in utero, in part due to the lack of genetic animal models. We previously showed that conditional inactivation of Sec10, a central subunit of the exocyst complex, in the epithelial cells of the ureter and renal collecting system resulted in late gestational bilateral UPJ obstructions with neonatal anuria and death. In this study, we show that without Sec10, the urothelial progenitor cells that line the ureter fail to differentiate into superficial cells, which are responsible for producing uroplakin plaques on the luminal surface. These Sec10-knockout urothelial cells undergo cell death by E17.5 and the urothelial barrier becomes leaky to luminal fluid. Also at E17.5, we measured increased expression of TGFβ1 and genes associated with myofibroblast activation, with evidence of stromal remodeling. Our findings support the model that a defective urothelial barrier allows urine to induce a fibrotic wound healing mechanism, which may contribute to human prenatal UPJ obstructions.


Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies.

  • Lori L O'Brien‎ et al.
  • PLoS genetics‎
  • 2018‎

Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated 'regulatory hotspots' around genes closely associated with progenitor programs. To examine their functional significance, we deleted 'hotspot' enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis.


Conditional Loss of the Exocyst Component Exoc5 in Retinal Pigment Epithelium (RPE) Results in RPE Dysfunction, Photoreceptor Cell Degeneration, and Decreased Visual Function.

  • Bärbel Rohrer‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

To characterize the mechanisms by which the highly conserved exocyst trafficking complex regulates eye physiology in zebrafish and mice, we focused on Exoc5 (also known as sec10), a central exocyst component. We analyzed both exoc5 zebrafish mutants and retinal pigmented epithelium (RPE)-specific Exoc5 knockout mice. Exoc5 is present in both the non-pigmented epithelium of the ciliary body and in the RPE. In this study, we set out to establish an animal model to study the mechanisms underlying the ocular phenotype and to establish if loss of visual function is induced by postnatal RPE Exoc5-deficiency. Exoc5-/- zebrafish had smaller eyes, with decreased number of melanocytes in the RPE and shorter photoreceptor outer segments. At 3.5 days post-fertilization, loss of rod and cone opsins were observed in zebrafish exoc5 mutants. Mice with postnatal RPE-specific loss of Exoc5 showed retinal thinning associated with compromised visual function and loss of visual photoreceptor pigments. Abnormal levels of RPE65 together with a reduced c-wave amplitude indicate a dysfunctional RPE. The retinal phenotype in Exoc5-/- mice was present at 20 weeks, but was more pronounced at 27 weeks, indicating progressive disease phenotype. We previously showed that the exocyst is necessary for photoreceptor ciliogenesis and retinal development. Here, we report that exoc5 mutant zebrafish and mice with RPE-specific genetic ablation of Exoc5 develop abnormal RPE pigmentation, resulting in retinal cell dystrophy and loss of visual pigments associated with compromised vision. Together, these data suggest that exocyst-mediated signaling in the RPE is required for RPE structure and function, indirectly leading to photoreceptor degeneration.


The exocyst is required for photoreceptor ciliogenesis and retinal development.

  • Glenn P Lobo‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

We previously have shown that the highly conserved eight-protein exocyst trafficking complex is required for ciliogenesis in kidney tubule cells. We hypothesized here that ciliogenic programs are conserved across organs and species. To determine whether renal primary ciliogenic programs are conserved in the eye, and to characterize the function and mechanisms by which the exocyst regulates eye development in zebrafish, we focused on exoc5, a central component of the exocyst complex, by analyzing both exoc5 zebrafish mutants, and photoreceptor-specific Exoc5 knock-out mice. Two separate exoc5 mutant zebrafish lines phenocopied exoc5 morphants and, strikingly, exhibited a virtual absence of photoreceptors, along with abnormal retinal development and cell death. Because the zebrafish mutant was a global knockout, we also observed defects in several ciliated organs, including the brain (hydrocephalus), heart (cardiac edema), and kidney (disordered and shorter cilia). exoc5 knockout increased phosphorylation of the regulatory protein Mob1, consistent with Hippo pathway activation. exoc5 mutant zebrafish rescue with human EXOC5 mRNA completely reversed the mutant phenotype. We accomplished photoreceptor-specific knockout of Exoc5 with our Exoc5 fl/fl mouse line crossed with a rhodopsin-Cre driver line. In Exoc5 photoreceptor-specific knock-out mice, the photoreceptor outer segment structure was severely impaired at 4 weeks of age, although a full-field electroretinogram indicated a visual response was still present. However, by 6 weeks, visual responses were eliminated. In summary, we show that ciliogenesis programs are conserved in the kidneys and eyes of zebrafish and mice and that the exocyst is necessary for photoreceptor ciliogenesis and retinal development, most likely by trafficking cilia and outer-segment proteins.


The exocyst complex regulates insulin-stimulated glucose uptake of skeletal muscle cells.

  • Brent A Fujimoto‎ et al.
  • American journal of physiology. Endocrinology and metabolism‎
  • 2019‎

Skeletal muscle handles ~80-90% of the insulin-induced glucose uptake. In skeletal muscle, insulin binding to its cell surface receptor triggers redistribution of intracellular glucose transporter GLUT4 protein to the cell surface, enabling facilitated glucose uptake. In adipocytes, the eight-protein exocyst complex is an indispensable constituent in insulin-induced glucose uptake, as it is responsible for the targeted trafficking and plasma membrane-delivery of GLUT4. However, the role of the exocyst in skeletal muscle glucose uptake has never been investigated. Here we demonstrate that the exocyst is a necessary factor in insulin-induced glucose uptake in skeletal muscle cells as well. The exocyst complex colocalizes with GLUT4 storage vesicles in L6-GLUT4myc myoblasts at a basal state and associates with these vesicles during their translocation to the plasma membrane after insulin signaling. Moreover, we show that the exocyst inhibitor endosidin-2 and a heterozygous knockout of Exoc5 in skeletal myoblast cells both lead to impaired GLUT4 trafficking to the plasma membrane and hinder glucose uptake in response to an insulin stimulus. Our research is the first to establish that the exocyst complex regulates insulin-induced GLUT4 exocytosis and glucose metabolism in muscle cells. A deeper knowledge of the role of the exocyst complex in skeletal muscle tissue may help our understanding of insulin resistance in type 2 diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: