Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Genetic alteration of histone lysine methyltransferases and their significance in renal cell carcinoma.

  • Libin Yan‎ et al.
  • PeerJ‎
  • 2019‎

Histone lysine methyltransferases (HMTs), a category of enzymes, play essential roles in regulating transcription, cellular differentiation, and chromatin construction. The genomic landscape and clinical significance of HMTs in renal cell carcinoma (RCC) remain uncovered.


Three-Dimensional Renal Organoids from Whole Kidney Cells: Generation, Optimization, and Potential Application in Nephrotoxicology In Vitro.

  • Beichen Ding‎ et al.
  • Cell transplantation‎
  • 2020‎

The kidney function of patients with chronic kidney disease (CKD) is impaired irreversibly. Organ transplantation is the only treatment to restore kidney function in CKD patients. The assessment of new potential therapeutic procedures relies heavily on experimental animal models, but it is limited by its human predictive capacity. In addition, the frequently used two-dimensional in vitro human renal cell models cannot replicate all the features of the in vivo situation. In this study, we developed a three-dimensional (3D) in vitro human renal organoid model from whole kidney cells as a promising drug screening tool. At present, the renal tissue generated from human pluripotent stem cells (hPSCs) exhibits intrinsic tumorigenicity properties. Here we first developed a 3D renal organoid culture system that originated from adult differentiated cells without gene modification. Renal organoids composed of multiple cell types were created under optimal experimental conditions and evaluated for morphology, viability and erythropoietin production. As a novel screening tool for renal toxicity, 3D organoids were exposed to three widely used drugs: aspirin, penicillin G and cisplatin. The study results showed this 3D renal organoid model can be used as a drug screening tool, a new in vitro 3D human kidney model, and provide hope for potential regenerative therapies for CKD.


The Immune Checkpoint Regulator PDL1 is an Independent Prognostic Biomarker for Biochemical Recurrence in Prostate Cancer Patients Following Adjuvant Hormonal Therapy.

  • Heng Li‎ et al.
  • Journal of Cancer‎
  • 2019‎

Background: The programmed death 1 (PD1)/programmed death ligand 1 (PDL1) targeted therapies have gained positive outcomes in several tumors, but the evidence of the expression and prognosis value of PD1/PDL1 in high risk prostate cancer was rare. Methods: Immunohistochemical analysis of PDL1/PD1 expression by a validated antibody was performed in a retrospectively collected high risk prostate cancer cohort who received adjuvant hormonal therapy (AHT) after radical prostatectomy (RP). The association between PDL1/PD1 expression and prognosis was determined. Results: In total, 127 patients were enrolled. 49.6% patients were considered PDL1-high expression while the PD1-positive expression proportion was 24.4%. High PDL1 and negative PD1 expression were significantly associated with lower prostate specific antigen (PSA) density (p=0.010 and p=0.033, respectively). Compared with the PDL1-low expression patients, the PDL1-high expression patients had significantly shorter time to PSA nadir (TTN) (P=0.001) and biochemical recurrence (BCR) (P=0.004). In Kaplan-Meier analysis, the PDL1-high expression group (p<0.0001) and the PDL1-high/PD1-negative expression group (p<0.0001) showed markedly lower BCR-free survival in localized disease. Univariate cause-specific Cox proportional hazard regression model concluded total PSA (p=0.047), PDL1-high-expression (p<0.001), PDL1-high/PD1-negative expression (p<0.001) were significant risk factors of shorter progression time to BCR in localized disease. PDL1-high-expression was the independent predictor of time to BCR in multiple Cox regression of all patients (Hazard ratio [HR]: 3.901; 95% Confidence interval [CI]: 1.287-11.824; p=0.016). Conclusions: PDL1 expression is not only highly prevalent in high-risk prostate cancer, but is also an independent biomarker in the prognosis of high-risk prostate cancer received AHT after RP. PDL1/PD1 targeted therapy might be a potentially adjuvant treatment option for high-risk prostate cancer after RP.


HnRNP A1 - mediated alternative splicing of CCDC50 contributes to cancer progression of clear cell renal cell carcinoma via ZNF395.

  • Guoliang Sun‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2020‎

Aberrant alternative splicing events play critical roles in carcinogenesis and progression of many cancers, while sparse studies regarding to alternative splicing are available for clear cell renal cell carcinoma (ccRCC). We identified that alternative splicing of coiled-coil domain containing 50 (CCDC50) was dysregulated in ccRCC, whereas the clinical significance of this splicing event and its splicing regulation mechanisms were still elusive.


CD46 splice variant enhances translation of specific mRNAs linked to an aggressive tumor cell phenotype in bladder cancer.

  • Jin Zeng‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2021‎

CD46 is well known to be involved in diverse biological processes. Although several splice variants of CD46 have been identified, little is known about the contribution of alternative splicing to its tumorigenic functions. In this study, we found that exclusion of CD46 exon 13 is significantly increased in bladder cancer (BCa) samples. In BCa cell lines, enforced expression of CD46-CYT2 (exon 13-skipping isoform) promoted, and CD46-CYT1 (exon 13-containing isoform) attenuated, cell growth, migration, and tumorigenicity in a xenograft model. We also applied interaction proteomics to identify exhaustively the complexes containing the CYT1 or CYT2 domain in EJ-1 cells. 320 proteins were identified that interact with the CYT1 and/or CYT2 domain, and most of them are new interactors. Using an internal ribosome entry site (IRES)-dependent reporter system, we established that CD46 could regulate mRNA translation through an interaction with the translation machinery. We also identified heterogeneous nuclear ribonucleoprotein (hnRNP)A1 as a novel CYT2 binding partner, and this interaction facilitates the interaction of hnRNPA1 with IRES RNA to promote IRES-dependent translation of HIF1a and c-Myc. Strikingly, the splicing factor SRSF1 is highly correlated with CD46 exon 13 exclusion in clinical BCa samples. Taken together, our findings contribute to understanding the role of CD46 in BCa development.


Transcriptomic and Metabolomic Analyses Provide Insights into the Growth and Development Advantages of Triploid Apostichopus japonicus.

  • Jiahui Xie‎ et al.
  • Marine biotechnology (New York, N.Y.)‎
  • 2022‎

Polyploid breeding is widely used in aquaculture as an important area of new research. We have previously grown Apostichopus japonicus triploids with a growth advantage. The body length, body weight, and aestivation time of triploid and diploid A. japonicus were measured in this study, and the transcriptome and metabolome were used to examine the growth advantage of triploids A. japonicus. The results showed that the proportion of triploid A. japonicus with a body length of 6-12 cm and 12-18 cm was significantly higher than that of diploid A. japonicus, and triploid A. japonicus had a shorter aestivation time (39 days) than diploid (63 days). We discovered 3296 differentially expressed genes (DEGs); 13 DEGs (for example, cyclin-dependent kinase 2) related to growth advantage, immune regulation, and energy storage were screened as potential candidates. According to Gene Ontology (GO) enrichment analysis, DEGs were significantly enriched in the cytoplasm (cellular component), ATP binding process (molecular function), oxidation-reduction process (biological process), and other pathways. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment data, DEGs were significantly enriched in ribosome production and other areas. We discovered 414 significant differential metabolites (SDMs), with 11 important SDMs (for example, nocodazole) linked to a growth advantage. SDMs are significantly enriched in metabolic pathways, as well as other pathways, according to the KEGG enrichment results. According to a combined transcriptome and metabolome analysis, 6 DEGs have regulatory relationships with 11 SDMs, which act on 11 metabolic pathways together. Our results further enrich the biological data of triploid A. japonicus and provide useful resources for genetic improvement of this species.


ZBRK1, a novel tumor suppressor, activates VHL gene transcription through formation of a complex with VHL and p300 in renal cancer.

  • Ke Chen‎ et al.
  • Oncotarget‎
  • 2015‎

Inactivation or mutation of the VHL gene causes various tumors, including clear cell renal cell carcinoma (ccRCC). In the present study, we identified ZBRK1 as a novel VHL interacting protein by yeast two-hybrid screening, and found a single ZBRK1-binding site located in the VHL promoter region. Ectopic expression of ZBRK1 increases transcriptional activity of the VHL, whereas the depletion of endogenous ZBRK1 by shRNA leads to reduction of VHL expression. We also demonstrate that the inhibition of VEGF transcription by ZBRK1 overexpression is dependent on VHL/HIF pathway. Moreover, VHL is confirmed to serve as a bridge component for the association of ZBRK1 and p300, which leads to an increase in ZBRK1 transcriptional activity in the VHL promoter. We further provide striking evidences that ZBRK1 acts as a tumor suppressor in renal carcinoma by a variety of in vitro and in vivo assays, and ZBRK1 may represent a molecular marker to distinguish patients with ccRCC at high risk from those with a better survival prognosis. Taken together, these findings suggest that ZBRK1 suppresses renal cancer progression perhaps by regulating VHL expression.


MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44.

  • Gan Yu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2014‎

Metastasis have considered as an important clinical obstacle in the treatment of human cancer including bladder cancer. Post-transcriptional regulation has emerged as robust effectors of metastasis. MiRNAs are involved in cancer development and progression, acting as tumor suppressors or oncogenes. In this study, we focus on it that microRNA-34a functions as an anti-metastatic microRNA and suppress angiogenesis in bladder cancer by directly targeting CD44.


miR-490-5p suppresses tumour growth in renal cell carcinoma through targeting PIK3CA.

  • Ke Chen‎ et al.
  • Biology of the cell‎
  • 2016‎

Dysregulated micro-RNAs have been reported in many human cancers, including renal cell carcinoma. Recent studies indicated that miR-490 is involved in tumour development and progression. However, the expression profile and function in renal cell carcinoma remains unknown.


Reduced PDCD4 Expression Promotes Cell Growth Through PI3K/Akt Signaling in Non-Small Cell Lung Cancer.

  • Yan Zhen‎ et al.
  • Oncology research‎
  • 2016‎

It is largely recognized that PDCD4 is frequently lost in tumors of various origins, including lung cancer, and its loss contributes to tumor progression. However, its role and molecular mechanism remain largely unexplored in non-small cell lung cancer (NSCLC). In this study, downregulated PDCD4 mRNA expression was found in NSCLC tissues compared to their corresponding paracarcinoma tissues and distal paracarcinoma tissues. Induced expression of PDCD4 inhibited cell growth and proliferation and cell cycle transition in vitro. Conversely, knocking down PDCD4 expression promoted cell growth and proliferation. Mechanistically, PDCD4 inactivated PI3K/Akt signaling and its downstream cell cycle factors CCND1 and CDK4 to regulate cell growth in NSCLC. Additionally, PI3K-specific inhibitor Ly294002 suppressed the expression of pPI3K (Tyr458), pAkt (Ser473), CCND1, and CDK4 in PC9-shPDCD4 and A549-shPDCD4 cells. Furthermore, Akt-specific inhibitor MK2206 inhibited the expression of pAkt (Ser473), CCND1, and CDK4 in PC9-shPDCD4 and A549-shPDCD4 cells. Taken together, our study provides evidence that PDCD4 inhibits cell growth through PI3K/Akt signaling in NSCLC and may be a potential therapeutic target for NSCLC.


lncRNA TUG1 Promotes Cisplatin Resistance by Regulating CCND2 via Epigenetically Silencing miR-194-5p in Bladder Cancer.

  • Gan Yu‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2019‎

Taurine-upregulated gene 1 (TUG1) has been involved in tumorigenesis of several human cancers, but its precise biological role in bladder cancer remains largely elusive. In this study, we found that TUG1 was upregulated in bladder cancer and the expression of TUG1 was positively and negatively correlated with CCND2 and miR-194-5p, respectively. MiR-194-5p expression was frequently decreased through promoter hypermethylation, while it was epigenetically increased following cisplatin and 5-aza-2'-deoxycytidine (5-Aza-DC) treatment. Furthermore, knockdown of TUG1 attenuated the expression of epigenetic regulator Enhancer of zeste homolog 2 (EZH2), and it alleviated the promoter hypermethylation of miR-194-5p and induced its expression. Increased miR-194-5p expression or decreased TUG1 expression significantly sensitized bladder cancer cells to cisplatin, inhibited the proliferation, and induced apoptosis. Besides, CCND2 was a direct target of miR-194-5p, while miR-194-5p was regulated by TUG1. CCND2 could partially restore the tumor-suppressive effects on cell proliferation and cisplatin resistance following TUG1 silencing. Additionally, TUG1 expression was correlated with clinical stage, lymphatic metastasis, and patient prognosis. In conclusion, TUG1 promotes bladder cancer cell growth and chemoresistance by regulating CCND2 via EZH2-associated silencing of miR-194-5p. Our study may be conducive to elucidating the molecular mechanism of and providing novel therapeutic target and biomarker for bladder cancer.


Integrated Analysis of Genetic Abnormalities of the Histone Lysine Methyltransferases in Prostate Cancer.

  • Yangjun Zhang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2019‎

BACKGROUND The histone methyltransferase (HMT) family includes histone lysine methyltransferases (HKMTs) and histone/protein arginine methyltransferases (PRMTs). The role of HMT gene variants in prostate cancer remains unknown. Therefore, this study aimed to evaluate HMT gene variants in the pathogenesis and prognosis of human prostate cancer, using in vitro cell studies and bioinformatics analysis. MATERIAL AND METHODS Integrative bioinformatics analysis of the expression of 51 HMT genes in human prostate cancer was based on datasets from the Cancer Genome Atlas (TCGA). Correlation and regression analysis were used to identify critical HMTs in prostate cancer. Kaplan-Meier and the area under the receiver operating characteristics curve (AUROC) were performed to evaluate the function of the HMTs on prognosis. Gene expression and function of 22Rv1 human prostate carcinoma cells were studied. RESULTS The HMT genes identified to have a role in the pathogenesis of prostate cancer included the EZH2, SETD5, PRDM12, NSD1, SETD6, SMYD1, and the WHSC1L1 gene. The EZH2, SETD5, and SMYD1 genes were selected as a prognostic panel, with the SUV420H2 HMT gene. SETD2, NSD1, and ASH1L were identified as critical genes in the development of castration-resistant prostate cancer (CRPC), similar to mixed-lineage leukemia (MLL) complex family members. Knockdown of the SETD5 gene in 22Rv1 prostate carcinoma cells in vitro inhibited cancer cell growth and migration. CONCLUSIONS HMT gene variants may have a role in the pathogenesis of prostate cancer. Future studies may determine the role of HMT genes as prognostic biomarkers in patients with prostate cancer.


Comparison of the oncological, perioperative and functional outcomes of partial nephrectomy versus radical nephrectomy for clinical T1b renal cell carcinoma: A systematic review and meta-analysis of retrospective studies.

  • Yucong Zhang‎ et al.
  • Asian journal of urology‎
  • 2021‎

To conduct a meta-analysis assessing the perioperative, functional and oncological outcomes of partial nephrectomy (PN) and radical nephrectomy (RN) for T1b tumours. The primary endpoints were the oncological outcomes. The secondary endpoints were the perioperative and functional outcomes.


Transcription Factors BARX1 and DLX4 Contribute to Progression of Clear Cell Renal Cell Carcinoma via Promoting Proliferation and Epithelial-Mesenchymal Transition.

  • Guoliang Sun‎ et al.
  • Frontiers in molecular biosciences‎
  • 2021‎

Dysregulation of transcription factors contributes to the carcinogenesis and progression of cancers. However, their roles in clear cell renal cell carcinoma remain largely unknown. This study aimed to evaluate the clinical significance of TFs and investigate their potential molecular mechanisms in ccRCC. Data were accessed from the cancer genome atlas kidney clear cell carcinoma cohort. Bioinformatics algorithm was used in copy number alterations mutations, and differentially expressed TFs' analysis. Univariate and multivariate Cox regression analyses were performed to identify clinically significant TFs and construct a six-TF prognostic panel. TFs' expression was validated in human tissues. Gene set enrichment analysis (GSEA) was utilized to find enriched cancer hallmark pathways. Functional experiments were conducted to verify the cancer-promoting effect of BARX homeobox 1 (BARX1) and distal-less homeobox 4 (DLX4) in ccRCC, and Western blot was performed to explore their downstream pathways. As for results, many CNAs and mutations were identified in transcription factor genes. TFs were differentially expressed in ccRCC. An applicable predictive panel of six-TF genes was constructed to predict the overall survival for ccRCC patients, and its diagnostic efficiency was evaluated by the area under the curve (AUC). BARX1 and DLX4 were associated with poor prognosis, and they could promote the proliferation and migration of ccRCC. In conclusion, the six-TF panel can be used as a prognostic biomarker for ccRCC patients. BARX1 and DLX4 play oncogenic roles in ccRCC via promoting proliferation and epithelial-mesenchymal transition. They have the potential to be novel therapeutic targets for ccRCC.


Polygonum multiflorm alleviates glucocorticoid‑induced osteoporosis and Wnt signaling pathway.

  • Manru Zhou‎ et al.
  • Molecular medicine reports‎
  • 2018‎

It is known that long‑term excessive administration of glucocorticoid (GC) results in osteoporosis. The present study aimed to evaluate the protective effects of Polygonum multiflorm (PM) on the bone tissue of rats with GC‑induced osteoporosis (GIO). A total of 90 6‑month‑old female Sprague Dawley rats (weight range, 190‑210 g) were randomly divided into nine groups: Control (normal saline); prednisone (GC; 6 mg·kg‑1·d‑1; Model); GC plus PMR30 (the 30% ethanol eluent fraction of PM) (H) (400 mg·kg‑1·d‑1); GC plus PMR30 (M) (200 mg·kg‑1·d‑1); GC plus PMR30 (L) (100 mg·kg‑1·d‑1); GC plus PMRF (fat‑soluble fraction of PM) (H) (400 mg·kg‑1·d‑1); GC plus PMRF (M) (200 mg·kg‑1·d‑1); GC plus PMRF (L) (100 mg·kg‑1·d‑1); GC plus calcitriol (CAL; 0.045 µg·kg‑1·d‑1; positive). Rats were administered intragastrically with prednisone and/or the aforementioned extracts for 120 days, and weighed once/week. The serum was collected for detection of biochemical markers. The left tibia was used for bone histomorphometry analysis. The right tibia was prepared for hematoxylin and eosin staining. The left femur was used to analyze the protein expression of dickkopf‑1 (DKK1), WNT inhibitory factor 1 (WIF1) and secreted frizzled related protein 4 using western blotting. Long‑term excessive treatment of prednisone inhibited the bone formation rate accompanied with a decrease in bone mass, growth plate, body weight, and the level of bone‑specific alkaline phosphatase and hydroxyl‑terminal propeptide of type I procollagen in the serum. Furthermore, a simultaneously increase in the level of tartrate resistant acid phosphatase‑5b and cross‑linked carboxy‑terminal telopeptide of type I collagen in the serum, in addition to DKK1, and WIF1 protein expression, was observed. PMR30 (M and L) and PMRF (H) groups were able to reduce the negative effects of GC on the bones. PMR30 (M and L) and PMRF (H) dose demonstrated a protective effect of PM on bone tissue in GIO rats. The mechanism underlying the preventive effect of PM for the treatment of GIO may be associated with direct upregulation of the canonical Wnt/β‑catenin signaling pathway.


HB-EGF-induced IL-8 secretion from airway epithelium leads to lung fibroblast proliferation and migration.

  • Yanyu Li‎ et al.
  • BMC pulmonary medicine‎
  • 2021‎

We have reported that heparin-binding epidermal growth factor (HB-EGF) is increased in patients with chronic obstructive pulmonary disease (COPD) and associated with collagen deposition, but the mechanisms remain unclear. In the present study, we aimed to investigated the inflammatory cytokines secreted by bronchial epithelial cells following exposure to HB-EGF that promoted proliferation and migration of human lung fibroblast.


Preventive effects of Polygonum multiflorum on glucocorticoid-induced osteoporosis in rats.

  • Manru Zhou‎ et al.
  • Experimental and therapeutic medicine‎
  • 2017‎

In Traditional Chinese Medicine, Polygonum multiflorum (PM) is known for its anti-aging properties. A previous study by our group showed that extracts of PM were able to prevent and treat bone loss in vivo, and the active components emodin and 2,3,5,4,-tetrahydroxystilbene-2-O-β-glucoside (TSG) promoted the osteogenic differentiation of mesenchymal stem cells in vitro. The aim of the present study was to investigate the preventive effects of PM on glucocorticoid-induced osteoporosis (GIO) in rats. A crude extract of PM was prepared with 75% ethanol, purified and enriched using a D-101 macroresin column and elution with 30% ethanol, and the material obtained was assessed by high-performance liquid chromatography. Male or female Sprague Dawley rats (n=180) were randomly divided into nine groups: Control, prednisone, prednisone plus calcitriol (CAL), prednisone plus 30% ethanolic eluate of PM [high (H), medium (M) and low (L) dose] and prednisone plus crude extract of PM (H, M and L dose). Prednisone was orally administered to the osteoporosis model rats for 21 weeks, alongside which they received PM extracts. The weight of the viscera, anterior tibial muscle and other tissues was recorded at the end of the experiment. The femur and lumbar vertebra were collected for the measurement of three-dimensional microarchitecture by micro-computed tomography scanning, assessment of biomechanical properties and determination of bone mineral density (BMD). In the 30% ethanolic eluate of the PM extract, the content of TSG and combined anthraquinone was 9.20 and 0.15%, respectively, and that in the crude extract of PM was 2.23 and 0.03%, respectively. Over 6 weeks, the weight of the rats the in prednisone group decreased (P<0.05), while the weight of rats treated with M and H doses of 30% ethanolic eluate was increased compared with that in the prednisone group (P<0.05). Rats exposed to prednisone exhibited a deteriorated bone microarchitecture, low BMD, decreased bone volume/total volume and poor biomechanical properties. Furthermore, the weight of the adrenal gland and the anterior tibial muscle was decreased. 30% ethanolic eluate of PM at M and L doses and crude extract of PM at the H dose counteracted the alterations of skeletal and other characteristics induced by prednisone in rats, as did CAL. In conclusion, extracts of PM exerted a protective effect on bone tissue in GIO rats.


Analysis of altered microRNA expression profiles in proximal renal tubular cells in response to calcium oxalate monohydrate crystal adhesion: implications for kidney stone disease.

  • Bohan Wang‎ et al.
  • PloS one‎
  • 2014‎

Calcium oxalate monohydrate (COM) is the major crystalline component in kidney stones and its adhesion to renal tubular cells leads to tubular injury. However, COM-induced toxic effects in renal tubular cells remain ambiguous. MicroRNAs (miRNAs) play an important role in gene regulation at the posttranscriptional levels.


LncRNAs expression signatures of renal clear cell carcinoma revealed by microarray.

  • Gan Yu‎ et al.
  • PloS one‎
  • 2012‎

Long noncoding RNAs (lncRNAs) are an important class of pervasive genes involved in a variety of biological functions. They are aberrantly expressed in many types of cancers. In this study, we described lncRNAs profiles in 6 pairs of human renal clear cell carcinoma (RCCC) and the corresponding adjacent nontumorous tissues (NT) by microarray.


Fibulin-1 is epigenetically down-regulated and related with bladder cancer recurrence.

  • Wei Xiao‎ et al.
  • BMC cancer‎
  • 2014‎

Bladder cancer is one of the most common cancers worldwide. Fibulin-1, a multi-functional extracellular matrix protein, has been demonstrated to be involved in many kinds of cancers, while its function in bladder cancer remains unclear. So here we investigated the expression and function of fibulin-1 in Bladder cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: