Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 145 papers

Epigenetic Silencing of Eyes Absent 4 Gene by Acute Myeloid Leukemia 1-Eight-twenty-one Oncoprotein Contributes to Leukemogenesis in t(8;21) Acute Myeloid Leukemia.

  • Sai Huang‎ et al.
  • Chinese medical journal‎
  • 2016‎

The acute myeloid leukemia 1 (AML1)-eight-twenty-one (ETO) fusion protein generated by the t(8;21)(q22;q22) translocation is considered to display a crucial role in leukemogenesis in AML. By focusing on the anti-leukemia effects of eyes absent 4 (EYA4) gene on AML cells, we investigated the biologic and molecular mechanism associated with AML1-ETO expressed in t(8;21) AML.


CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma.

  • Shiruyeh Schokrpur‎ et al.
  • Scientific reports‎
  • 2016‎

Metastatic renal cell carcinoma (mRCC) is nearly incurable and accounts for most of the mortality associated with RCC. Von Hippel Lindau (VHL) is a tumour suppressor that is lost in the majority of clear cell RCC (ccRCC) cases. Its role in regulating hypoxia-inducible factors-1α (HIF-1α) and -2α (HIF-2α) is well-studied. Recent work has demonstrated that VHL knock down induces an epithelial-mesenchymal transition (EMT) phenotype. In this study we showed that a CRISPR/Cas9-mediated knock out of VHL in the RENCA model leads to morphologic and molecular changes indicative of EMT, which in turn drives increased metastasis to the lungs. RENCA cells deficient in HIF-1α failed to undergo EMT changes upon VHL knockout. RNA-seq revealed several HIF-1α-regulated genes that are upregulated in our VHL knockout cells and whose overexpression signifies an aggressive form of ccRCC in the cancer genome atlas (TCGA) database. Independent validation in a new clinical dataset confirms the upregulation of these genes in ccRCC samples compared to adjacent normal tissue. Our findings indicate that loss of VHL could be driving tumour cell dissemination through stabilization of HIF-1α in RCC. A better understanding of the mechanisms involved in this phenomenon can guide the search for more effective treatments to combat mRCC.


Genetic alteration of histone lysine methyltransferases and their significance in renal cell carcinoma.

  • Libin Yan‎ et al.
  • PeerJ‎
  • 2019‎

Histone lysine methyltransferases (HMTs), a category of enzymes, play essential roles in regulating transcription, cellular differentiation, and chromatin construction. The genomic landscape and clinical significance of HMTs in renal cell carcinoma (RCC) remain uncovered.


iTRAQ-Based Proteomics to Reveal the Mechanism of Hypothalamus in Kidney-Yin Deficiency Rats Induced by Levothyroxine.

  • Wei Guan‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2019‎

Kidney-yin deficiency syndrome (KYDS) is a typical syndrome encountered in traditional Chinese medicine (TCM) and is characterized by impaired lipid and glucose homeostasis. The hypothalamus acts as an important regulatory organ by controlling lipid and glucose metabolism in the body. Therefore, proteins in the hypothalamus could play important roles in KYDS development; however, the mechanisms responsible for KYDS remain unclear. Herein, iTRAQ-based proteomics was performed to analyze the protein expression in the hypothalamus of KYDS rats induced by levothyroxine (L-T4). Results revealed a total of 44 downregulated and 18 upregulated proteins in KYDS group relative to the control group. Gene Ontology (GO) analysis revealed that the differently expressed proteins (DEPs) were related to single-organism metabolism process under the biological process (BP), extracellular region part and organelle under the cellular component (CC), and oxidoreductase activity under the molecular function (MF). Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis showed that fatty acid degradation and pyruvate metabolism participated in the metabolism regulation in KYDS rats. RT-PCR validation of five distinctly expressed proteins related to the two pathways was consistent with the results of proteomics analysis. Taken together, the inhibition of fatty acid degradation and pyruvate metabolism in hypothalamus could potentially cause the dysfunction of the lipid and glucose metabolism in KYDS rats. This current study identified some novel potential biomarkers of KYDS and provided the basis for further research of KYDS.


Differential plasma proteome analysis in patients with high-altitude pulmonary edema at the acute and recovery phases.

  • Yingzhong Yang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2014‎

This study aimed to investigate the differential expression of plasma proteins in patients suffering from high-altitude pulmonary edema (HAPE) at different phases. A complete proteomic analysis was performed using two-dimensional gel electrophoresis followed by mass spectrometry in three patients with HAPE at the acute stage and recovery phase. Comparisons between the expression patterns of the patients with HAPE at the two different phases led to the identification of eight protein spots with a >1.5-fold difference in expression between the acute and recovery phases. These differentially expressed proteins were apolipoproteins, serum amyloid P component, complement components and others. Apolipoprotein A-I (Apo A-I), serum amyloid P component and fibrinogen were overexpressed in the patients with HAPE in the acute stage compared with their expression levels in the recovery phase. However, Apo A-IV and antithrombin-III were overexpressed in the patients with HAPE in the recovery phase compared with their expression levels in the acute stage. The results indicate that the differential plasma proteome in patients with HAPE may be associated with the occurrence of HAPE, and the expression changes of Apo A-I and A-IV may offer further understanding of HAPE to aid its prognosis, diagnosis and treatment.


Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells.

  • Junhui Hu‎ et al.
  • Stem cell reports‎
  • 2017‎

Renal cell carcinoma (RCC) is a deadly malignancy due to its tendency to metastasize and resistance to chemotherapy. Stem-like tumor cells often confer these aggressive behaviors. We discovered an endoglin (CD105)-expressing subpopulation in human RCC xenografts and patient samples with a greater capability to form spheres in vitro and tumors in mice at low dilutions than parental cells. Knockdown of CD105 by short hairpin RNA and CRISPR/cas9 reduced stemness markers and sphere-formation ability while accelerating senescence in vitro. Importantly, downregulation of CD105 significantly decreased the tumorigenicity and gemcitabine resistance. This loss of stem-like properties can be rescued by CDA, MYC, or NANOG, and CDA might act as a demethylase maintaining MYC and NANOG. In this study, we showed that Endoglin (CD105) expression not only demarcates a cancer stem cell subpopulation but also confers self-renewal ability and contributes to chemoresistance in RCC.


miR-135b Stimulates Osteosarcoma Recurrence and Lung Metastasis via Notch and Wnt/β-Catenin Signaling.

  • Hua Jin‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2017‎

Cancer stem cells (CSCs) play an important role in osteosarcoma (OS) metastasis and recurrence, and both Wnt/β-catenin and Notch signaling are essential for the development of the biological traits of CSCs. However, the mechanism that underlies the simultaneous hyperactivation of both Wnt/β-catenin and Notch signaling in OS remains unclear. Here, we report that expression of miR-135b correlates with the overall and recurrence-free survival of OS patients, and that miR-135b has an activating effect on both Wnt/β-catenin and Notch signaling. The overexpression of miR-135b simultaneously targets multiple negative regulators of the Wnt/β-catenin and Notch signaling pathways, including glycogen synthase kinase-3 beta (GSK3β), casein kinase 1a (CK1α), and ten-eleven translocation 3 (TET3). Therefore, upregulated miR-135b promotes CSC traits, lung metastasis, and tumor recurrence in OS. Notably, antagonizing miR-135b potently inhibits OS lung metastasis, cancer cell stemness, CSC-induced tumor formation, and recurrence in xenograft animal models. These findings suggest that miR-135b mediates the constitutive activation of Wnt/β-catenin and Notch signaling, and that the inhibition of miR-135b is a novel strategy to inhibit tumor metastasis and prevent CSC-induced recurrence in OS.


Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26.

  • Ying Zhang‎ et al.
  • Nucleic acids research‎
  • 2010‎

HDM2 is a p53-specific E3 ubiquitin ligase. Its overexpression leads to excessive inactivation of tumor protein p53, diminishing its tumor suppressor function. HDM2 also affects the cell cycle, apoptosis and tumorigenesis through interacting with other molecules, including several ribosomal proteins. To identify novel HDM2 regulators, we performed a yeast two-hybrid screening using HDM2 as bait. Among the candidates, ribosomal protein L26 (RPL26) was characterized as a novel HDM2-interactor. The interaction between HDM2 and RPL26 was further validated by in vivo and in vitro assays. RPL26 modulates the HDM2-p53 interaction by forming a ternary complex among RPL26, HDM2 and p53, which stabilize p53 through inhibiting the ubiquitin ligase activity of HDM2. The ribosomal stress caused by a low dose of Act D enhances RPL26-HDM2 interaction and activates p53. Overexpression of RPL26 results in activating of p53, inhibits cell proliferation and induces a p53-dependent cell cycle arrest. These results provide a novel regulatory mechanism of RPL26 to activate p53 by inhibiting HDM2.


Shh influences cell number and the distribution of neuronal subtypes in dorsal root ganglia.

  • Wei Guan‎ et al.
  • Developmental biology‎
  • 2008‎

The molecular mechanisms responsible for specifying the dorsal-ventral pattern of neuronal identities in dorsal root ganglia (DRG) are unclear. Here we demonstrate that Sonic hedgehog (Shh) contributes to patterning early DRG cells. In vitro, Shh increases both proliferation and programmed cell death (PCD). Increasing Shh in vivo enhances PCD in dorsal DRG, while inducing greater proliferation ventrally. In such animals, markers characteristic of ventral sensory neurons are expanded to more dorsal positions. Conversely, reducing Shh function results in decreased proliferation of progenitors in the ventral region and decreased expression of the ventral marker trkC. Later arising trkA(+) afferents make significant pathfinding errors in animals with reduced Shh function, suggesting that accurate navigation of later arising growth cones requires either Shh itself or early arising, Shh-dependent afferents. These results indicate that Shh can regulate both cell number and the distribution of cell types in DRG, thereby playing an important role in the specification, patterning and pathfinding of sensory neurons.


Phospholipase A2 regulation of bovine endometrial (BEND) cell prostaglandin production.

  • James D Godkin‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2008‎

Prostaglandins (PG), produced by the uterine endometrium, are key regulators of several reproductive events, including estrous cyclicity, implantation, pregnancy maintenance and parturition. Phospholipase A2 (PLA2) catalyzes the release of arachidonic acid from membrane phospholipids, the rate-limiting step in PG biosynthesis. The bovine endometrial (BEND) cell line has served as a model system for investigating regulation of signaling mechanisms involved in uterine PG production but information concerning the specific PLA2 enzymes involved and their role in regulation of this process is limited. The objectives of this investigation were to evaluate the expression and activities of calcium-dependent group IVA (PLA2G4A) and calcium-independent group VI (PLA2G6) enzymes in the regulation of BEND cell PG production.


GATA binding protein 3 is correlated with leptin regulation of PPARγ1 in hepatic stellate cells.

  • Wei Guan‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2017‎

Accumulating evidence reveals that hormone leptin, mainly produced by adipocyte, plays a unique role in promotion of liver fibrosis. Hepatic stellate cell (HSC) activation is a key step in liver fibrosis and peroxisome-proliferator activated receptor γ (PPARγ) exerts a crucial role in inhibition of HSC activation. Our previous researches demonstrated that leptin reduced PPARγ1 (a major subtype of PPARγ in HSCs) expression through GATA binding protein 2 (GATA2) binding to a site around -2323 in PPARγ1 promoter. The present researches aimed to examine the effect of GATA3 on leptin-induced inhibition of PPARγ1 and elucidate the relationship between GATA3 and GATA2. Gene expressions were analysed by real-time PCR, western blot, luciferase assay and immunostaining. C57BL/6J ob/ob mouse model of thioacetamide-induced liver injury was used in vivo. Results demonstrate that leptin significantly induces GATA3 expression in HSCs by multiple signalling pathways including NADPH oxidase pathway. There exist crosstalks between NADPH oxidase pathway and the other pathways. GATA3 can bind to GATA2-binding site in PPARγ1 promoter and interacts with GATA2, contributing to leptin inhibition of PPARγ1 expression in HSCs. These data demonstrated novel molecular events for leptin inhibition of PPARγ1 expression in HSCs and thus might have potential implications for clarifying the detailed mechanisms underlying liver fibrosis in diseases in which circulating leptin levels are elevated such as non-alcoholic steatohepatitis in obese patients.


Three-Dimensional Renal Organoids from Whole Kidney Cells: Generation, Optimization, and Potential Application in Nephrotoxicology In Vitro.

  • Beichen Ding‎ et al.
  • Cell transplantation‎
  • 2020‎

The kidney function of patients with chronic kidney disease (CKD) is impaired irreversibly. Organ transplantation is the only treatment to restore kidney function in CKD patients. The assessment of new potential therapeutic procedures relies heavily on experimental animal models, but it is limited by its human predictive capacity. In addition, the frequently used two-dimensional in vitro human renal cell models cannot replicate all the features of the in vivo situation. In this study, we developed a three-dimensional (3D) in vitro human renal organoid model from whole kidney cells as a promising drug screening tool. At present, the renal tissue generated from human pluripotent stem cells (hPSCs) exhibits intrinsic tumorigenicity properties. Here we first developed a 3D renal organoid culture system that originated from adult differentiated cells without gene modification. Renal organoids composed of multiple cell types were created under optimal experimental conditions and evaluated for morphology, viability and erythropoietin production. As a novel screening tool for renal toxicity, 3D organoids were exposed to three widely used drugs: aspirin, penicillin G and cisplatin. The study results showed this 3D renal organoid model can be used as a drug screening tool, a new in vitro 3D human kidney model, and provide hope for potential regenerative therapies for CKD.


PER1 interaction with GPX1 regulates metabolic homeostasis under oxidative stress.

  • Qi Sun‎ et al.
  • Redox biology‎
  • 2020‎

Metabolism serves mammalian feeding and active behavior, and is controlled by circadian clock. The molecular mechanism by which clock factors regulate metabolic homeostasis under oxidative stress is unclear. Here, we have characterized that the daily oxygen consumption rhythm was deregulated in Per1 deficient mice. Per1 deficiency impaired daily mitochondrial dynamics and deregulated cellular GPx-related ROS fluctuations in the peripheral organs. We identified that PER1 enhanced GPx activity through PER1/GPX1 interaction in cytoplasm, consequently improving the oxidative phosphorylation efficiency of mitochondria. Per1 expression was specifically elevated in the fasting peripheral organs for protecting mitochondrial from oxidation stress. These observations reveal that Per1-driven mitochondrial dynamics is a critical effector mechanism for the regulation of mitochondrial function in response to oxidation stress.


Diagnostic Accuracy of Interleukin-27 in Bronchoalveolar Lavage Fluids for Pulmonary Tuberculosis.

  • Shan Lin‎ et al.
  • Infection and drug resistance‎
  • 2019‎

The World Health Organization states that China had 0.9 million cases of tuberculosis in 2017, accounting for 9% of cases globally. Despite a decrease in the incidence and mortality of tuberculosis in China over time, development in choosing the appropriate prevention and control of TB is required.


Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury.

  • Kun Xiao‎ et al.
  • Cell death & disease‎
  • 2020‎

Acute lung injury (ALI) is a pulmonary disorder, which can result in fibrosis of the lung tissues. Recently, mesenchymal stem cell (MSC) has become a novel therapeutic method for ALI. However, the potential mechanism by which MSC regulates the progression of ALI remains blurry. The present study focused on investigating the mechanism underneath MSC-reversed lung injury and fibrosis. At first, we determined that coculture with MSC led to the inactivation of NF-κB signaling and therefore suppressed hedgehog pathway in LPS-treated MLE-12 cells. Besides, we confirmed that MSC-exosomes were responsible for the inhibition of EMT process in LPS-treated MLE-12 cells through transmitting miRNAs. Mechanism investigation revealed that MSC-exosome transmitted miR-182-5p and miR-23a-3p into LPS-treated MLE-12 cells to, respectively, target Ikbkb and Usp5. Of note, Usp5 interacted with IKKβ to hamper IKKβ ubiquitination. Moreover, co-inhibition of miR-182-5p and miR-23a-3p offset the suppression of MSC on EMT process in LPS-treated MLE-12 cells as well as in LPS-injured lungs of mice. Besides, the retarding effect of MSC on p65 nuclear translocation was also counteracted after co-inhibiting miR-182-5p and miR-23a-3p, both in vitro and in vivo. In summary, MSC-exosome transmitted miR-23a-3p and miR-182-5p reversed the progression of LPS-induced lung injury and fibrosis through inhibiting NF-κB and hedgehog pathways via silencing Ikbkb and destabilizing IKKβ.


RhoGDI stability is regulated by SUMOylation and ubiquitination via the AT1 receptor and participates in Ang II-induced smooth muscle proliferation and vascular remodeling.

  • Fan Dai‎ et al.
  • Atherosclerosis‎
  • 2019‎

The physiological role of Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI) in vascular remodeling remains unknown. We investigated the function of RhoGDI in angiotensin II (Ang II)-induced vascular remodeling in cultured human aortic vascular smooth muscle cells (HA-VSMCs) and in an Ang II-infusion vascular remodeling mouse model.


The Immune Checkpoint Regulator PDL1 is an Independent Prognostic Biomarker for Biochemical Recurrence in Prostate Cancer Patients Following Adjuvant Hormonal Therapy.

  • Heng Li‎ et al.
  • Journal of Cancer‎
  • 2019‎

Background: The programmed death 1 (PD1)/programmed death ligand 1 (PDL1) targeted therapies have gained positive outcomes in several tumors, but the evidence of the expression and prognosis value of PD1/PDL1 in high risk prostate cancer was rare. Methods: Immunohistochemical analysis of PDL1/PD1 expression by a validated antibody was performed in a retrospectively collected high risk prostate cancer cohort who received adjuvant hormonal therapy (AHT) after radical prostatectomy (RP). The association between PDL1/PD1 expression and prognosis was determined. Results: In total, 127 patients were enrolled. 49.6% patients were considered PDL1-high expression while the PD1-positive expression proportion was 24.4%. High PDL1 and negative PD1 expression were significantly associated with lower prostate specific antigen (PSA) density (p=0.010 and p=0.033, respectively). Compared with the PDL1-low expression patients, the PDL1-high expression patients had significantly shorter time to PSA nadir (TTN) (P=0.001) and biochemical recurrence (BCR) (P=0.004). In Kaplan-Meier analysis, the PDL1-high expression group (p<0.0001) and the PDL1-high/PD1-negative expression group (p<0.0001) showed markedly lower BCR-free survival in localized disease. Univariate cause-specific Cox proportional hazard regression model concluded total PSA (p=0.047), PDL1-high-expression (p<0.001), PDL1-high/PD1-negative expression (p<0.001) were significant risk factors of shorter progression time to BCR in localized disease. PDL1-high-expression was the independent predictor of time to BCR in multiple Cox regression of all patients (Hazard ratio [HR]: 3.901; 95% Confidence interval [CI]: 1.287-11.824; p=0.016). Conclusions: PDL1 expression is not only highly prevalent in high-risk prostate cancer, but is also an independent biomarker in the prognosis of high-risk prostate cancer received AHT after RP. PDL1/PD1 targeted therapy might be a potentially adjuvant treatment option for high-risk prostate cancer after RP.


Observation of the Gut Microbiota Profile in C57BL/6 Mice Induced by Plasmodium berghei ANKA Infection.

  • Wei Guan‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

The genus of Plasmodium parasites can cause malaria, which is a prevalent infectious disease worldwide, especially in tropical and subtropical regions. C57BL/6 mice infected with P. berghei ANKA (PbA) will suffer from experimental cerebral malaria (ECM). However, the gut microbiota in C57BL/6 mice has rarely been investigated, especially regarding changes in the intestinal environment caused by infectious parasites. P. berghei ANKA-infected (PbA group) and uninfected C57BL/6 (Ctrl group) mice were used in this study. C57BL/6 mice were infected with PbA via intraperitoneal injection of 1 × 106 infected red blood cells. Fecal samples of two groups were collected. The microbiota of feces obtained from both uninfected and infected mice was characterized by targeting the V4 region of the 16S rRNA through the Illumina MiSeq platform. The variations in the total gut microbiota composition were determined based on alpha and beta diversity analyses of 16S rRNA sequencing. The raw sequences from all samples were generated and clustered using ≥ 97% sequence identity into many microbial operational taxonomic units (OTUs). The typical microbiota composition in the gut was dominated by Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia at the phylum level. Bacteroidetes and Verrucomicrobia were considerably decreased after PbA infection compared with the control group (Ctrl), while Firmicutes and Proteobacteria were increased substantially after PbA infection compared with Ctrl. The alpha diversity index showed that the observed OTU number was increased in the PbA group compared with the Ctrl group. Moreover, the discreteness of the beta diversity revealed that the PbA group samples had a higher number of OTUs than the Ctrl group. LEfSe analysis revealed that several potential bacterial biomarkers were clearly related to the PbA-infected mice at the phylogenetic level. Several bacterial genera, such as Acinetobacter, Lactobacillus, and Lachnospiraceae_NK4A136_group, were overrepresented in the PbA-infected fecal microbiota. Meanwhile, a method similar to gene coexpression network construction was used to generate the OTU co-abundance units. These results indicated that P. berghei ANKA infection could alter the gut microbiota composition of C57BL/6 mice. In addition, potential biomarkers should offer insight into malaria pathogenesis and antimalarial drug and malaria vaccine studies.


Transcriptomic and Metabolomic Analyses Provide Insights into the Growth and Development Advantages of Triploid Apostichopus japonicus.

  • Jiahui Xie‎ et al.
  • Marine biotechnology (New York, N.Y.)‎
  • 2022‎

Polyploid breeding is widely used in aquaculture as an important area of new research. We have previously grown Apostichopus japonicus triploids with a growth advantage. The body length, body weight, and aestivation time of triploid and diploid A. japonicus were measured in this study, and the transcriptome and metabolome were used to examine the growth advantage of triploids A. japonicus. The results showed that the proportion of triploid A. japonicus with a body length of 6-12 cm and 12-18 cm was significantly higher than that of diploid A. japonicus, and triploid A. japonicus had a shorter aestivation time (39 days) than diploid (63 days). We discovered 3296 differentially expressed genes (DEGs); 13 DEGs (for example, cyclin-dependent kinase 2) related to growth advantage, immune regulation, and energy storage were screened as potential candidates. According to Gene Ontology (GO) enrichment analysis, DEGs were significantly enriched in the cytoplasm (cellular component), ATP binding process (molecular function), oxidation-reduction process (biological process), and other pathways. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment data, DEGs were significantly enriched in ribosome production and other areas. We discovered 414 significant differential metabolites (SDMs), with 11 important SDMs (for example, nocodazole) linked to a growth advantage. SDMs are significantly enriched in metabolic pathways, as well as other pathways, according to the KEGG enrichment results. According to a combined transcriptome and metabolome analysis, 6 DEGs have regulatory relationships with 11 SDMs, which act on 11 metabolic pathways together. Our results further enrich the biological data of triploid A. japonicus and provide useful resources for genetic improvement of this species.


MiR-497-5p down-regulates CDCA4 to restrains lung squamous cell carcinoma progression.

  • Jiangwei Hu‎ et al.
  • Journal of cardiothoracic surgery‎
  • 2021‎

So far, few have concerned miR-497-5p in lung squamous cell carcinoma (LUSC).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: