Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 63 papers

Dysregulation of sodium channel expression in cortical neurons in a rodent model of absence epilepsy.

  • Joshua P Klein‎ et al.
  • Brain research‎
  • 2004‎

Due to the involvement of cortical neurons in spike-wave discharge (SWD) initiation, and the contribution of voltage-gated sodium channels (VGSCs) to neuronal firing, we examined alterations in the expression of VGSC mRNA and protein in cortical neurons in the WAG/Rij absence epileptic rat. WAG/Rij rats were compared to age-matched Wistar control rats at 2, 4, and 6 months. Continuous EEG data was recorded, and percent time in SWD was determined. Tissue from different cortical locations from WAG/Rij and Wistar rats was analyzed for VGSC mRNA (by quantitative PCR) and protein (by immunocytochemistry). SWDs increased with age in WAG/Rij rats. mRNA levels for sodium channels Nav1.1 and Nav1.6, but not Nav1.2, were found to be up-regulated selectively within the facial somatosensory cortex (at AP +0.0, ML +6.0 mm). Protein levels for Nav1.1 and Nav1.6 were up-regulated in layer II-IV cortical neurons in this region of cortex. No significant changes were seen in adjacent regions or other brain areas, including the pre-frontal and occipital cortex. In the WAG/Rij model of absence epilepsy, we identified a specific region of cortex, in layer II-IV neurons on the lateral convexity of the cortex in the facial somatosensory area, where mRNA and protein expression of sodium channel genes Nav1.1 and Nav1.6 are up-regulated. This region of cortex approximately matches the electrophysiologically determined region of seizure onset. Changes in the expression of Nav1.1 and Nav1.6 parallel age-dependent increases in seizure frequency and duration.


Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity.

  • Hyang Woon Lee‎ et al.
  • Neurology‎
  • 2014‎

The purpose of this study was to investigate functional connectivity (FC) changes in epileptogenic networks in intractable partial epilepsy obtained from resting-state fMRI by using intrinsic connectivity contrast (ICC), a voxel-based network measure of degree that reflects the number of connections to each voxel.


A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells.

  • Ramiro Nández‎ et al.
  • eLife‎
  • 2014‎

Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations.


Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study.

  • Jennifer N Guo‎ et al.
  • The Lancet. Neurology‎
  • 2016‎

The neural underpinnings of impaired consciousness and of the variable severity of behavioural deficits from one absence seizure to the next are not well understood. We aimed to measure functional MRI (fMRI) and electroencephalography (EEG) changes in absence seizures with impaired task performance compared with seizures in which performance was spared.


Functional MRI and neural responses in a rat model of Alzheimer's disease.

  • Basavaraju G Sanganahalli‎ et al.
  • NeuroImage‎
  • 2013‎

Based on the hypothesis that brain plaques and tangles can affect cortical function in Alzheimer's disease (AD), we investigated functional responses in an AD rat model (called the Samaritan Alzheimer's rat achieved by ventricular infusion of amyloid peptide) and age-matched healthy control. High-field functional magnetic resonance imaging (fMRI) and extracellular neural activity measurements were applied to characterize sensory-evoked responses. Electrical stimulation of the forepaw led to BOLD and neural responses in the contralateral somatosensory cortex and thalamus. In AD brain we noted much smaller BOLD activation patterns in the somatosensory cortex (i.e., about 50% less activated voxels compared to normal brain). While magnitudes of BOLD and neural responses in the cerebral cortex were markedly attenuated in AD rats compared to normal rats (by about 50%), the dynamic coupling between the BOLD and neural responses in the cerebral cortex, as assessed by transfer function analysis, remained unaltered between the groups. However thalamic BOLD and neural responses were unaltered in AD brain compared to controls. Thus cortical responses in the AD model were indeed diminished compared to controls, but the thalamic responses in the AD and control rats were quite similar. Therefore these results suggest that Alzheimer's disease may affect cortical function more than subcortical function, which may have implications for interpreting altered human brain functional responses in fMRI studies of Alzheimer's disease.


Mitochondrial functional state impacts spontaneous neocortical activity and resting state FMRI.

  • Basavaraju G Sanganahalli‎ et al.
  • PloS one‎
  • 2013‎

Mitochondrial Ca(2+) uptake, central to neural metabolism and function, is diminished in aging whereas enhanced after acute/sub-acute traumatic brain injury. To develop relevant translational models for these neuropathologies, we determined the impact of perturbed mitochondrial Ca(2+) uptake capacities on intrinsic brain activity using clinically relevant markers. From a multi-compartment estimate of probable baseline Ca(2+) ranges in the brain, we hypothesized that reduced or enhanced mitochondrial Ca(2+) uptake capacity would decrease or increase spontaneous neuronal activity respectively. As resting state fMRI-BOLD fluctuations and stimulus-evoked BOLD responses have similar physiological origins [1] and stimulus-evoked neuronal and hemodynamic responses are modulated by mitochondrial Ca(2+) uptake capacity [2], [3] respectively, we tested our hypothesis by measuring hemodynamic fluctuations and spontaneous neuronal activities during normal and altered mitochondrial functional states. Mitochondrial Ca(2+) uptake capacity was perturbed by pharmacologically inhibiting or enhancing the mitochondrial Ca(2+) uniporter (mCU) activity. Neuronal electrical activity and cerebral blood flow (CBF) fluctuations were measured simultaneously and integrated with fMRI-BOLD fluctuations at 11.7T. mCU inhibition reduced spontaneous neuronal activity and the resting state functional connectivity (RSFC), whereas mCU enhancement increased spontaneous neuronal activity but reduced RSFC. We conclude that increased or decreased mitochondrial Ca(2+) uptake capacities lead to diminished resting state modes of brain functional connectivity.


An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior.

  • Yonwoo Jung‎ et al.
  • Nature neuroscience‎
  • 2016‎

Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2l mRNA, encoding a component of a histone methyltransferase complex. We therefore examined genome-wide changes in trimethylation of histone H3 on Lys4 (H3K4me3), a mark induced by the Ash2l complex associated with increased gene transcription. A large proportion of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4me3. Knockdown of Ash2l or Mef2c abolished nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuated nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimicked nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior.


Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size.

  • Matthew B Johnson‎ et al.
  • Nature‎
  • 2018‎

The human cerebral cortex is distinguished by its large size and abundant gyrification, or folding. However, the evolutionary mechanisms that drive cortical size and structure are unknown. Although genes that are essential for cortical developmental expansion have been identified from the genetics of human primary microcephaly (a disorder associated with reduced brain size and intellectual disability) 1 , studies of these genes in mice, which have a smooth cortex that is one thousand times smaller than the cortex of humans, have provided limited insight. Mutations in abnormal spindle-like microcephaly-associated (ASPM), the most common recessive microcephaly gene, reduce cortical volume by at least 50% in humans2-4, but have little effect on the brains of mice5-9; this probably reflects evolutionarily divergent functions of ASPM10,11. Here we used genome editing to create a germline knockout of Aspm in the ferret (Mustela putorius furo), a species with a larger, gyrified cortex and greater neural progenitor cell diversity12-14 than mice, and closer protein sequence homology to the human ASPM protein. Aspm knockout ferrets exhibit severe microcephaly (25-40% decreases in brain weight), reflecting reduced cortical surface area without significant change in cortical thickness, as has been found in human patients3,4, suggesting that loss of 'cortical units' has occurred. The cortex of fetal Aspm knockout ferrets displays a very large premature displacement of ventricular radial glial cells to the outer subventricular zone, where many resemble outer radial glia, a subtype of neural progenitor cells that are essentially absent in mice and have been implicated in cerebral cortical expansion in primates12-16. These data suggest an evolutionary mechanism by which ASPM regulates cortical expansion by controlling the affinity of ventricular radial glial cells for the ventricular surface, thus modulating the ratio of ventricular radial glial cells, the most undifferentiated cell type, to outer radial glia, a more differentiated progenitor.


Molecular Imaging of Extracellular Tumor pH to Reveal Effects of Locoregional Therapy on Liver Cancer Microenvironment.

  • Lynn Jeanette Savic‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2020‎

To establish magnetic resonance (MR)-based molecular imaging paradigms for the noninvasive monitoring of extracellular pH (pHe) as a functional surrogate biomarker for metabolic changes induced by locoregional therapy of liver cancer.


APOE genotype-dependent pharmacogenetic responses to rapamycin for preventing Alzheimer's disease.

  • Ai-Ling Lin‎ et al.
  • Neurobiology of disease‎
  • 2020‎

The ε4 allele of Apolipoprotein (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD), the most common form of dementia. Cognitively normal APOE4 carriers have developed amyloid beta (Aβ) plaques and cerebrovascular, metabolic and structural deficits decades before showing the cognitive impairment. Interventions that can inhibit Aβ retention and restore the brain functions to normal would be critical to prevent AD for the asymptomatic APOE4 carriers. A major goal of the study was to identify the potential usefulness of rapamycin (Rapa), a pharmacological intervention for extending longevity, for preventing AD in the mice that express human APOE4 gene and overexpress Aβ (the E4FAD mice). Another goal of the study was to identify the potential pharmacogenetic differences in response to rapamycin between the E4FAD and E3FAD mice, the mice with human APOE ε3 allele. We used multi-modal MRI to measure in vivo cerebral blood flow (CBF), neurotransmitter levels, white matter integrity, water content, cerebrovascular reactivity (CVR) and somatosensory response; used behavioral assessments to determine cognitive function; used biochemistry assays to determine Aβ retention and blood-brain barrier (BBB) functions; and used metabolomics to identify brain metabolic changes. We found that in the E4FAD mice, rapamycin normalized bodyweight, restored CBF (especially in female), BBB activity for Aβ transport, neurotransmitter levels, neuronal integrity and free fatty acid level, and reduced Aβ retention, which were not observe in the E3FAD-Rapa mice. In contrast, E3FAD-Rapa mice had lower CVR responses, lower anxiety and reduced glycolysis in the brain, which were not seen in the E4FAD-Rapa mice. Further, rapamycin appeared to normalize lipid-associated metabolism in the E4FAD mice, while slowed overall glucose-associated metabolism in the E3FAD mice. Finally, rapamycin enhanced overall water content, water diffusion in white matter, and spatial memory in both E3FAD and E4FAD mice, but did not impact the somatosensory responses under hindpaw stimulation. Our findings indicated that rapamycin was able to restore brain functions and reduce AD risk for young, asymptomatic E4FAD mice, and there were pharmacogenetic differences between the E3FAD and E4FAD mice. As the multi-modal MRI methods used in the study are readily to be used in humans and rapamycin is FDA-approved, our results may pave a way for future clinical testing of the pharmacogenetic responses in humans with different APOE alleles, and potentially using rapamycin to prevent AD for asymptomatic APOE4 carriers.


The pulse: transient fMRI signal increases in subcortical arousal systems during transitions in attention.

  • Rong Li‎ et al.
  • NeuroImage‎
  • 2021‎

Studies of attention emphasize cortical circuits for salience monitoring and top-down control. However, subcortical arousal systems have a major influence on dynamic cortical state. We hypothesize that task-related increases in attention begin with a "pulse" in subcortical arousal and cortical attention networks, which are reflected indirectly through transient fMRI signals. We conducted general linear model and model-free analyses of fMRI data from two cohorts and tasks with mixed block and event-related design. 46 adolescent subjects at our center and 362 normal adults from the Human Connectome Project participated. We identified a core shared network of transient fMRI increases in subcortical arousal and cortical salience/attention networks across cohorts and tasks. Specifically, we observed a transient pulse of fMRI increases both at task block onset and with individual task events in subcortical arousal areas including midbrain tegmentum, thalamus, nucleus basalis and striatum; cortical-subcortical salience network regions including the anterior insula/claustrum and anterior cingulate cortex/supplementary motor area; in dorsal attention network regions including dorsolateral frontal cortex and inferior parietal lobule; as well as in motor regions including cerebellum, and left hemisphere hand primary motor cortex. The transient pulse of fMRI increases in subcortical and cortical arousal and attention networks was consistent across tasks and study populations, whereas sustained activity in these same networks was more variable. The function of the transient pulse in these networks is unknown. However, given its anatomical distribution, it could participate in a neuromodulatory surge of activity in multiple parallel neurotransmitter systems facilitating dynamic changes in conscious attention.


Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Attention Network With Projection Data Fidelity Layer.

  • Bo Zhou‎ et al.
  • IEEE transactions on medical imaging‎
  • 2021‎

Limited view tomographic reconstruction aims to reconstruct a tomographic image from a limited number of projection views arising from sparse view or limited angle acquisitions that reduce radiation dose or shorten scanning time. However, such a reconstruction suffers from severe artifacts due to the incompleteness of sinogram. To derive quality reconstruction, previous methods use UNet-like neural architectures to directly predict the full view reconstruction from limited view data; but these methods leave the deep network architecture issue largely intact and cannot guarantee the consistency between the sinogram of the reconstructed image and the acquired sinogram, leading to a non-ideal reconstruction. In this work, we propose a cascaded residual dense spatial-channel attention network consisting of residual dense spatial-channel attention networks and projection data fidelity layers. We evaluate our methods on two datasets. Our experimental results on AAPM Low Dose CT Grand Challenge datasets demonstrate that our algorithm achieves a consistent and substantial improvement over the existing neural network methods on both limited angle reconstruction and sparse view reconstruction. In addition, our experimental results on Deep Lesion datasets demonstrate that our method is able to generate high-quality reconstruction for 8 major lesion types.


Early cortical signals in visual stimulus detection.

  • Hunki Kwon‎ et al.
  • NeuroImage‎
  • 2021‎

During visual conscious perception, the earliest responses linked to signal detection are little known. The current study aims to reveal the cortical neural activity changes in the earliest stages of conscious perception using recordings from intracranial electrodes. Epilepsy patients (N=158) were recruited from a multi-center collaboration and completed a visual word recall task. Broadband gamma activity (40-115Hz) was extracted with a band-pass filter and gamma power was calculated across subjects on a common brain surface. Our results show early gamma power increases within 0-50ms after stimulus onset in bilateral visual processing cortex, right frontal cortex (frontal eye fields, ventral medial/frontopolar, orbital frontal) and bilateral medial temporal cortex regardless of whether the word was later recalled. At the same early times, decreases were seen in the left rostral middle frontal gyrus. At later times after stimulus onset, gamma power changes developed in multiple cortical regions. These included sustained changes in visual and other association cortical networks, and transient decreases in the default mode network most prominently at 300-650ms. In agreement with prior work in this verbal memory task, we also saw greater increases in visual and medial temporal regions as well as prominent later (> 300ms) increases in left hemisphere language areas for recalled versus not recalled stimuli. These results suggest an early signal detection network in the frontal, medial temporal, and visual cortex is engaged at the earliest stages of conscious visual perception.


Extracellular 5'-methylthioadenosine inhibits intracellular symmetric dimethylarginine protein methylation of FUSE-binding proteins.

  • Baiqing Tang‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway that converts the polyamine synthesis byproduct 5'-deoxy-5'-methylthioadenosine (MTA) into methionine. Inactivation of MTAP, often by homozygous deletion, is found in both solid and hematologic malignancies and is one of the most frequently observed genetic alterations in human cancer. Previous work established that MTAP-deleted cells accumulate MTA and contain decreased amounts of proteins with symmetric dimethylarginine (sDMA). These findings led to the hypothesis that accumulation of intracellular MTA inhibits the protein arginine methylase (PRMT5) responsible for bulk protein sDMAylation. Here, we confirm that MTAP-deleted cells have increased MTA accumulation and reduced protein sDMAylation. However, we also show that addition of extracellular MTA can cause a dramatic reduction of the steady-state levels of sDMA-containing proteins in MTAP+ cells, even though no sustained increase in intracellular MTA is found because of catabolism of MTA by MTAP. We determined that inhibition of protein sDMAylation by MTA occurs within 48 h, is reversible, and is specific. In addition, we have identified two enhancer-binding proteins, FUBP1 and FUBP3, that are differentially sDMAylated in response to MTAP and MTA. These proteins work via the far upstream element site located upstream of Myc and other promoters. Using a transcription reporter construct containing the far upstream element site, we demonstrate that MTA addition can reduce transcription, suggesting that the reduction in FUBP1 and FUBP3 sDMAylation has functional consequences. Overall, our findings show that extracellular MTA can inhibit protein sDMAylation and that this inhibition can affect FUBP function.


Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions.

  • Karen Perez de Arce‎ et al.
  • Nature communications‎
  • 2023‎

Multiple trans-synaptic complexes organize synapse development, yet their roles in the mature brain and cooperation remain unclear. We analyzed the postsynaptic adhesion protein LRRTM1 in the prefrontal cortex (PFC), a region relevant to cognition and disorders. LRRTM1 knockout (KO) mice had fewer synapses, and we asked whether other synapse organizers counteract further loss. This determined that the immunoglobulin family member SynCAM 1 controls synapse number in PFC and was upregulated upon LRRTM1 loss. Combined LRRTM1 and SynCAM 1 deletion substantially lowered dendritic spine number in PFC, but not hippocampus, more than the sum of single KO impairments. Their cooperation extended presynaptically, and puncta of Neurexins, LRRTM1 partners, were less abundant in double KO (DKO) PFC. Electrophysiology and fMRI demonstrated aberrant neuronal activity in DKO mice. Further, DKO mice were impaired in social interactions and cognitive tasks. Our results reveal concerted roles of LRRTM1 and SynCAM 1 across synaptic, network, and behavioral domains.


NetrinG1+ cancer-associated fibroblasts generate unique extracellular vesicles that support the survival of pancreatic cancer cells under nutritional stress.

  • Kristopher S Raghavan‎ et al.
  • Cancer research communications‎
  • 2022‎

It is projected that in 5 years, pancreatic cancer will become the second deadliest cancer in the United States. A unique aspect of pancreatic ductal adenocarcinoma (PDAC) is its stroma; rich in cancer-associated fibroblasts (CAFs) and a dense CAF-generated extracellular matrix (ECM). These pathogenic stroma CAF/ECM units cause the collapse of local blood vessels rendering the tumor microenvironment nutrient-poor. PDAC cells are able to survive this state of nutrient stress via support from CAF-secreted material, which includes small extracellular vesicles (sEVs). The tumor-supportive CAFs possess a distinct phenotypic profile, compared to normal-like fibroblasts, expressing NetrinG1 (NetG1) at the plasma membrane, and active Integrin α5β1 localized to the multivesicular bodies; traits indicative of poor patient survival. We herein report that NetG1+ CAFs secrete sEVs that stimulate Akt-mediated survival in nutrient-deprived PDAC cells, protecting them from undergoing apoptosis. Further, we show that NetG1 expression in CAFs is required for the pro-survival properties of sEVs. Additionally, we report that the above-mentioned CAF markers are secreted in distinct subpopulations of EVs; with NetG1 being enriched in exomeres, and Integrin α5β1 being enriched in exosomes. Finally, we found that NetG1 and Integrin α5β1 were detected in sEVs collected from plasma of PDAC patients, while their levels were significantly lower in plasma-derived sEVs of sex/age-matched healthy donors. The discovery of these tumor-supporting CAF-EVs elucidates novel avenues in tumor-stroma interactions and pathogenic stroma detection.


Mapping Lesion-Related Epilepsy to a Human Brain Network.

  • Frederic L W V J Schaper‎ et al.
  • JAMA neurology‎
  • 2023‎

It remains unclear why lesions in some locations cause epilepsy while others do not. Identifying the brain regions or networks associated with epilepsy by mapping these lesions could inform prognosis and guide interventions.


Application of multiplexed kinase inhibitor beads to study kinome adaptations in drug-resistant leukemia.

  • Matthew J Cooper‎ et al.
  • PloS one‎
  • 2013‎

Protein kinases play key roles in oncogenic signaling and are a major focus in the development of targeted cancer therapies. Imatinib, a BCR-Abl tyrosine kinase inhibitor, is a successful front-line treatment for chronic myelogenous leukemia (CML). However, resistance to imatinib may be acquired by BCR-Abl mutations or hyperactivation of Src family kinases such as Lyn. We have used multiplexed kinase inhibitor beads (MIBs) and quantitative mass spectrometry (MS) to compare kinase expression and activity in an imatinib-resistant (MYL-R) and -sensitive (MYL) cell model of CML. Using MIB/MS, expression and activity changes of over 150 kinases were quantitatively measured from various protein kinase families. Statistical analysis of experimental replicates assigned significance to 35 of these kinases, referred to as the MYL-R kinome profile. MIB/MS and immunoblotting confirmed the over-expression and activation of Lyn in MYL-R cells and identified additional kinases with increased (MEK, ERK, IKKα, PKCβ, NEK9) or decreased (Abl, Kit, JNK, ATM, Yes) abundance or activity. Inhibiting Lyn with dasatinib or by shRNA-mediated knockdown reduced the phosphorylation of MEK and IKKα. Because MYL-R cells showed elevated NF-κB signaling relative to MYL cells, as demonstrated by increased IκBα and IL-6 mRNA expression, we tested the effects of an IKK inhibitor (BAY 65-1942). MIB/MS and immunoblotting revealed that BAY 65-1942 increased MEK/ERK signaling and that this increase was prevented by co-treatment with a MEK inhibitor (AZD6244). Furthermore, the combined inhibition of MEK and IKKα resulted in reduced IL-6 mRNA expression, synergistic loss of cell viability and increased apoptosis. Thus, MIB/MS analysis identified MEK and IKKα as important downstream targets of Lyn, suggesting that co-targeting these kinases may provide a unique strategy to inhibit Lyn-dependent imatinib-resistant CML. These results demonstrate the utility of MIB/MS as a tool to identify dysregulated kinases and to interrogate kinome dynamics as cells respond to targeted kinase inhibition.


Mechanisms of decreased cholinergic arousal in focal seizures: In vivo whole-cell recordings from the pedunculopontine tegmental nucleus.

  • John P Andrews‎ et al.
  • Experimental neurology‎
  • 2019‎

Focal limbic seizures often impair consciousness/awareness with major negative impact on quality of life. Recent work has shown that limbic seizures depress brainstem arousal systems, including reduced action potential firing in a key node: cholinergic neurons of the pedunculopontine tegmental nucleus (PPT). In vivo whole-cell recordings have not previously been achieved in PPT, but are used here with the goal of elucidating the mechanisms of reduced PPT cholinergic neuronal activity. An established model of focal limbic seizures was used in rats following brief hippocampal stimulation under light anesthesia. Whole-cell in vivo recordings were obtained from PPT neurons using custom-fabricated 9-10 mm tapered patch pipettes, and cholinergic neurons were identified histologically. Average membrane potential, input resistance, membrane potential fluctuations and variance were analyzed during seizures. A subset of PPT neurons exhibited reduced firing and hyperpolarization during seizures and stained positive for choline acetyltransferase. These PPT neurons showed a mean membrane potential hyperpolarization of -3.82 mV (±0.81 SEM, P < .05) during seizures, and also showed significantly increased input resistance, fewer excitatory post-synaptic potential (EPSP)-like events (P < .05), and reduced membrane potential variance (P < .01). The combination of increased input resistance, decreased EPSP-like events and decreased variance weigh against active ictal inhibition and support withdrawal of excitatory input as the dominant mechanism of decreased activity of cholinergic neurons in the PPT. Further identifying synaptic mechanisms of depressed arousal during seizures may lead to new treatments to improve ictal and postictal cognition.


Quantitative β mapping for calibrated fMRI.

  • Christina Y Shu‎ et al.
  • NeuroImage‎
  • 2016‎

The metabolic and hemodynamic dependencies of the blood oxygenation level-dependent (BOLD) signal form the basis for calibrated fMRI, where the focus is on oxidative energy demanded by neural activity. An important part of calibrated fMRI is the power-law relationship between the BOLD signal and the deoxyhemoglobin concentration, which in turn is related to the ratio between oxidative demand (CMRO2) and blood flow (CBF). The power-law dependence between BOLD signal and deoxyhemoglobin concentration is signified by a scaling exponent β. Until recently most studies assumed a β value of 1.5, which is based on numerical simulations of the extravascular BOLD component. Since the basal value of CMRO2 and CBF can vary from subject-to-subject and/or region-to-region, a method to independently measure β in vivo should improve the accuracy of calibrated fMRI results. We describe a new method for β mapping through characterizing R2' - the most sensitive relaxation component of BOLD signal (i.e., the reversible magnetic susceptibility component that is predominantly of extravascular origin at high magnetic field) - as a function of intravascular magnetic susceptibility induced by an FDA-approved superparamagnetic contrast agent. In α-chloralose anesthetized rat brain, at 9.4 T, we measured β values of ~0.8 uniformly across large neocortical swathes, with lower magnitude and more heterogeneity in subcortical areas. Comparison of β maps in rats anesthetized with medetomidine and α-chloralose revealed that β is independent of neural activity levels at these resting states. We anticipate that this method for β mapping can help facilitate calibrated fMRI for clinical studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: