Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 72 papers

Correction of microtubule-kinetochore attachment errors: mechanisms and role in tumor suppression.

  • Robin M Ricke‎ et al.
  • Seminars in cell & developmental biology‎
  • 2011‎

During mitosis, cells segregate duplicated chromosomes with high fidelity in order to maintain genome stability. Proper attachment of sister kinetochores to spindle microtubules is critical for accurate chromosome segregation and is driven by complex mechanisms that promote the capture of unattached kinetochores and the resolution of erroneously attached kinetochores. Defects in these surveillance systems promote chromosome segregation and aneuploidy and can contribute to neoplastic transformation. Understanding, how, at the molecular level, accurate chromosome segregation is achieved may be crucial for our understanding of how cancer cells develop genome instability.


Activation of the transforming growth factor-β/SMAD transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular carcinoma.

  • Renumathy Dhanasekaran‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2015‎

In vitro studies have proposed a tumor suppressor role for sulfatase 1 (SULF1) in hepatocellular carcinoma (HCC); however, high expression in human HCC has been associated with poor prognosis. The reason underlying this paradoxical observation remains to be explored. Using a transgenic (Tg) mouse model overexpressing Sulf1 (Sulf1-Tg), we assessed the effects of SULF1 on the diethylnitrosamine model of liver carcinogenesis. Sulf1-Tg mice show a higher incidence of large and multifocal tumors with diethylnitrosamine injection compared to wild-type mice. Lung metastases were found in 75% of Sulf1-Tg mice but not in wild-type mice. Immunohistochemistry, immunoblotting, and reporter assays all show a significant activation of the transforming growth factor-β (TGF-β)/SMAD transcriptional pathway by SULF1 both in vitro and in vivo. This effect of SULF1 on the TGF-β/SMAD pathway is functional; overexpression of SULF1 promotes TGF-β-induced gene expression and epithelial-mesenchymal transition and enhances cell migration/invasiveness. Mechanistic analyses demonstrate that inactivating mutation of the catalytic site of SULF1 impairs the above actions of SULF1 and diminishes the release of TGF-β from the cell surface. We also show that SULF1 expression decreases the interaction between TGF-β1 and its heparan sulfate proteoglycan sequestration receptor, TGFβR3. Finally, using gene expression from human HCCs, we show that patients with high SULF1 expression have poorer recurrence-free survival (hazard ratio 4.1, 95% confidence interval 1.9-8.3; P = 0.002) compared to patients with low SULF1. We also found strong correlations of SULF1 expression with TGF-β expression and with several TGF-β-related epithelial-mesenchymal transition genes in human HCC.


SIRT2 induces the checkpoint kinase BubR1 to increase lifespan.

  • Brian J North‎ et al.
  • The EMBO journal‎
  • 2014‎

Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1(H/H)) live shorter and show signs of accelerated aging. As wild-type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age-related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1-7) are a family of NAD(+)-dependent deacetylases that can delay age-related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD(+) and the ability of SIRT2 to maintain lysine-668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD(+) precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1(H/H) animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD(+) to delay diseases of aging in mammals is warranted.


Chronic inflammation induces telomere dysfunction and accelerates ageing in mice.

  • Diana Jurk‎ et al.
  • Nature communications‎
  • 2014‎

Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-κB induces premature ageing in mice. We also show that these mice have reduced regeneration in liver and gut. nfkb1(-/-) fibroblasts exhibit aggravated cell senescence because of an enhanced autocrine and paracrine feedback through NF-κB, COX-2 and ROS, which stabilizes DNA damage. Preferential accumulation of telomere-dysfunctional senescent cells in nfkb1(-/-) tissues is blocked by anti-inflammatory or antioxidant treatment of mice, and this rescues tissue regenerative potential. Frequencies of senescent cells in liver and intestinal crypts quantitatively predict mean and maximum lifespan in both short- and long-lived mice cohorts. These data indicate that systemic chronic inflammation can accelerate ageing via ROS-mediated exacerbation of telomere dysfunction and cell senescence in the absence of any other genetic or environmental factor.


COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A.

  • Christine A Phillips-Krawczak‎ et al.
  • Molecular biology of the cell‎
  • 2015‎

COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.


The Copper Metabolism MURR1 domain protein 1 (COMMD1) modulates the aggregation of misfolded protein species in a client-specific manner.

  • Willianne I M Vonk‎ et al.
  • PloS one‎
  • 2014‎

The Copper Metabolism MURR1 domain protein 1 (COMMD1) is a protein involved in multiple cellular pathways, including copper homeostasis, NF-κB and hypoxia signalling. Acting as a scaffold protein, COMMD1 mediates the levels, stability and proteolysis of its substrates (e.g. the copper-transporters ATP7B and ATP7A, RELA and HIF-1α). Recently, we established an interaction between the Cu/Zn superoxide dismutase 1 (SOD1) and COMMD1, resulting in a decreased maturation and activation of SOD1. Mutations in SOD1, associated with the progressive neurodegenerative disorder Amyotrophic Lateral Sclerosis (ALS), cause misfolding and aggregation of the mutant SOD1 (mSOD1) protein. Here, we identify COMMD1 as a novel regulator of misfolded protein aggregation as it enhances the formation of mSOD1 aggregates upon binding. Interestingly, COMMD1 co-localizes to the sites of mSOD1 inclusions and forms high molecular weight complexes in the presence of mSOD1. The effect of COMMD1 on protein aggregation is client-specific as, in contrast to mSOD1, COMMD1 decreases the abundance of mutant Parkin inclusions, associated with Parkinson's disease. Aggregation of a polyglutamine-expanded Huntingtin, causative of Huntington's disease, appears unaltered by COMMD1. Altogether, this study offers new research directions to expand our current knowledge on the mechanisms underlying aggregation disease pathologies.


Nuclear COMMD1 Is Associated with Cisplatin Sensitivity in Ovarian Cancer.

  • Alina Fedoseienko‎ et al.
  • PloS one‎
  • 2016‎

Copper metabolism MURR1 domain 1 (COMMD1) protein is a multifunctional protein, and its expression has been correlated with patients' survival in different types of cancer. In vitro studies revealed that COMMD1 plays a role in sensitizing cancer cell lines to cisplatin, however, the mechanism and its role in platinum sensitivity in cancer has yet to be established. We evaluated the role of COMMD1 in cisplatin sensitivity in A2780 ovarian cancer cells and the relation between COMMD1 expression and response to platinum-based therapy in advanced stage high-grade serous ovarian cancer (HGSOC) patients. We found that elevation of nuclear COMMD1 expression sensitized A2780 ovarian cancer cells to cisplatin-mediated cytotoxicity. This was accompanied by a more effective G2/M checkpoint, and decreased protein expression of the DNA repair gene BRCA1, and the apoptosis inhibitor BCL2. Furthermore, COMMD1 expression was immunohistochemically analyzed in two tissue micro-arrays (TMAs), representing a historical cohort and a randomized clinical trial-based cohort of advanced stage HGSOC tumor specimens. Expression of COMMD1 was observed in all ovarian cancer samples, however, specifically nuclear expression of COMMD1 was only observed in a subset of ovarian cancers. In our historical cohort, nuclear COMMD1 expression was associated with an improved response to chemotherapy (OR = 0.167; P = 0.038), although this association could not be confirmed in the second cohort, likely due to sample size. Taken together, these results suggest that nuclear expression of COMMD1 sensitize ovarian cancer to cisplatin, possibly by modulating the G2/M checkpoint and through controlling expression of genes involved in DNA repair and apoptosis.


The progeroid gene BubR1 regulates axon myelination and motor function.

  • Chan-Il Choi‎ et al.
  • Aging‎
  • 2016‎

Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of normal and aberrant myelination remain incompletely understood. Here we report that axon myelination and related motor function are dependent on BubR1, a mitotic checkpoint protein that has been linked to progeroid phenotypes when expressed at low levels and healthy lifespan when overabundant. We found that oligodendrocyte progenitor cell proliferation and oligodendrocyte density is markedly reduced in mutant mice with low amounts of BubR1 (BubR1H/H mice), causing axonal hypomyelination in both brain and spinal cord. Expression of essential myelin-related genes such as MBP and PLP1 was significantly reduced in these tissues. Consistent with defective myelination, BubR1H/H mice exhibited various motor deficits, including impaired motor strength, coordination, and balance, irregular gait patterns and reduced locomotor activity. Collectively, these data suggest that BubR1 is a key determinant of oligodendrocyte production and function and provide a molecular entry point to understand age-related degenerative changes in axon myelination.


Identification of p38 MAPK and JNK as new targets for correction of Wilson disease-causing ATP7B mutants.

  • Giancarlo Chesi‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2016‎

Wilson disease (WD) is an autosomal recessive disorder that is caused by the toxic accumulation of copper (Cu) in the liver. The ATP7B gene, which is mutated in WD, encodes a multitransmembrane domain adenosine triphosphatase that traffics from the trans-Golgi network to the canalicular area of hepatocytes, where it facilitates excretion of excess Cu into the bile. Several ATP7B mutations, including H1069Q and R778L that are two of the most frequent variants, result in protein products, which, although still functional, remain in the endoplasmic reticulum. Thus, they fail to reach Cu excretion sites, resulting in the toxic buildup of Cu in the liver of WD patients. Therefore, correcting the location of these mutants by leading them to the appropriate functional sites in the cell should restore Cu excretion and would be beneficial to help large cohorts of WD patients. However, molecular targets for correction of endoplasmic reticulum-retained ATP7B mutants remain elusive. Here, we show that expression of the most frequent ATP7B mutant, H1069Q, activates p38 and c-Jun N-terminal kinase signaling pathways, which favor the rapid degradation of the mutant. Suppression of these pathways with RNA interference or specific chemical inhibitors results in the substantial rescue of ATP7B(H1069Q) (as well as that of several other WD-causing mutants) from the endoplasmic reticulum to the trans-Golgi network compartment, in recovery of its Cu-dependent trafficking, and in reduction of intracellular Cu levels.


Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling.

  • Haiying Li‎ et al.
  • The Journal of cell biology‎
  • 2015‎

Notch family members are transmembrane receptors that mediate essential developmental programs. Upon ligand binding, a proteolytic event releases the intracellular domain of Notch, which translocates to the nucleus to regulate gene transcription. In addition, Notch trafficking across the endolysosomal system is critical in its regulation. In this study we report that Notch recycling to the cell surface is dependent on the COMMD-CCDC22-CCDC93 (CCC) complex, a recently identified regulator of endosomal trafficking. Disruption in this system leads to intracellular accumulation of Notch2 and concomitant reduction in Notch signaling. Interestingly, among the 10 copper metabolism MURR1 domain containing (COMMD) family members that can associate with the CCC complex, only COMMD9 and its binding partner, COMMD5, have substantial effects on Notch. Furthermore, Commd9 deletion in mice leads to embryonic lethality and complex cardiovascular alterations that bear hallmarks of Notch deficiency. Altogether, these studies highlight that the CCC complex controls Notch activation by modulating its intracellular trafficking and demonstrate cargo-specific effects for members of the COMMD protein family.


Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.

  • Darren J Baker‎ et al.
  • Nature‎
  • 2016‎

Cellular senescence, a stress-induced irreversible growth arrest often characterized by expression of p16(Ink4a) (encoded by the Ink4a/Arf locus, also known as Cdkn2a) and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time, and have been speculated to have a role in ageing. To explore the physiological relevance and consequences of naturally occurring senescent cells, here we use a previously established transgene, INK-ATTAC, to induce apoptosis in p16(Ink4a)-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. We show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. The clearance of p16(Ink4a)-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Thus, p16(Ink4a)-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in several organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.


Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline.

  • Tyler J Bussian‎ et al.
  • Nature‎
  • 2018‎

Cellular senescence, which is characterized by an irreversible cell-cycle arrest1 accompanied by a distinctive secretory phenotype2, can be induced through various intracellular and extracellular factors. Senescent cells that express the cell cycle inhibitory protein p16INK4A have been found to actively drive naturally occurring age-related tissue deterioration3,4 and contribute to several diseases associated with ageing, including atherosclerosis5 and osteoarthritis6. Various markers of senescence have been observed in patients with neurodegenerative diseases7-9; however, a role for senescent cells in the aetiology of these pathologies is unknown. Here we show a causal link between the accumulation of senescent cells and cognition-associated neuronal loss. We found that the MAPTP301SPS19 mouse model of tau-dependent neurodegenerative disease10 accumulates p16INK4A-positive senescent astrocytes and microglia. Clearance of these cells as they arise using INK-ATTAC transgenic mice prevents gliosis, hyperphosphorylation of both soluble and insoluble tau leading to neurofibrillary tangle deposition, and degeneration of cortical and hippocampal neurons, thus preserving cognitive function. Pharmacological intervention with a first-generation senolytic modulates tau aggregation. Collectively, these results show that senescent cells have a role in the initiation and progression of tau-mediated disease, and suggest that targeting senescent cells may provide a therapeutic avenue for the treatment of these pathologies.


Naturally Occurring Variants in LRP1 (Low-Density Lipoprotein Receptor-Related Protein 1) Affect HDL (High-Density Lipoprotein) Metabolism Through ABCA1 (ATP-Binding Cassette A1) and SR-B1 (Scavenger Receptor Class B Type 1) in Humans.

  • Federico Oldoni‎ et al.
  • Arteriosclerosis, thrombosis, and vascular biology‎
  • 2018‎

Studies into the role of LRP1 (low-density lipoprotein receptor-related protein 1) in human lipid metabolism are scarce. Although it is known that a common variant in LRP1 (rs116133520) is significantly associated with HDL-C (high-density lipoprotein cholesterol), the mechanism underlying this observation is unclear. In this study, we set out to study the functional effects of 2 rare LRP1 variants identified in subjects with extremely low HDL-C levels.


Partial Deletion of Tie2 Affects Microvascular Endothelial Responses to Critical Illness in A Vascular Bed and Organ-Specific Way.

  • Rianne M Jongman‎ et al.
  • Shock (Augusta, Ga.)‎
  • 2019‎

Tyrosine kinase receptor (Tie2) is mainly expressed by endothelial cells. In animal models mimicking critical illness, Tie2 levels in organs are temporarily reduced. Functional consequences of these reduced Tie2 levels on microvascular endothelial behavior are unknown. We investigated the effect of partial deletion of Tie2 on the inflammatory status of endothelial cells in different organs. Newly generated heterozygous Tie2 knockout mice (exon 9 deletion, ΔE9/Tie2) exhibiting 50% reduction in Tie2 mRNA and protein, and wild-type littermate controls (Tie2), were subjected to hemorrhagic shock and resuscitation (HS + R), or challenged with i.p. lipopolysaccharide (LPS). Kidney, liver, lung, heart, brain, and intestine were analyzed for mRNA levels of adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular cell adhesion molecule 1 (ICAM-1), and CD45. Exposure to HS + R did not result in different expression responses of these molecules between organs from Tie2 or Tie2 mice and sham-operated mice. In contrast, the LPS-induced mRNA expression levels of E-selectin, VCAM-1, and ICAM-1, and CD45 in organs were attenuated in Tie2 mice when compared with Tie2 mice in kidney and liver, but not in the other organs studied. Furthermore, reduced expression of E-selectin and VCAM-1 protein, and reduced influx of CD45 cells upon LPS exposure, was visible in a microvascular bed-specific pattern in kidney and liver of Tie2 mice compared with controls. In contrast to the hypothesis that a disbalance in the Ang/Tie2 system leads to increased microvascular inflammation, heterozygous deletion of Tie2 is associated with an organ-restricted, microvascular bed-specific attenuation of endothelial inflammatory response to LPS.


Mice with a deficiency in Peroxisomal Membrane Protein 4 (PXMP4) display mild changes in hepatic lipid metabolism.

  • Maaike Blankestijn‎ et al.
  • Scientific reports‎
  • 2022‎

Peroxisomes play an important role in the metabolism of a variety of biomolecules, including lipids and bile acids. Peroxisomal Membrane Protein 4 (PXMP4) is a ubiquitously expressed peroxisomal membrane protein that is transcriptionally regulated by peroxisome proliferator-activated receptor α (PPARα), but its function is still unknown. To investigate the physiological function of PXMP4, we generated a Pxmp4 knockout (Pxmp4-/-) mouse model using CRISPR/Cas9-mediated gene editing. Peroxisome function was studied under standard chow-fed conditions and after stimulation of peroxisomal activity using the PPARα ligand fenofibrate or by using phytol, a metabolite of chlorophyll that undergoes peroxisomal oxidation. Pxmp4-/- mice were viable, fertile, and displayed no changes in peroxisome numbers or morphology under standard conditions. Also, no differences were observed in the plasma levels of products from major peroxisomal pathways, including very long-chain fatty acids (VLCFAs), bile acids (BAs), and BA intermediates di- and trihydroxycholestanoic acid. Although elevated levels of the phytol metabolites phytanic and pristanic acid in Pxmp4-/- mice pointed towards an impairment in peroxisomal α-oxidation capacity, treatment of Pxmp4-/- mice with a phytol-enriched diet did not further increase phytanic/pristanic acid levels. Finally, lipidomic analysis revealed that loss of Pxmp4 decreased hepatic levels of the alkyldiacylglycerol class of neutral ether lipids, particularly those containing polyunsaturated fatty acids. Together, our data show that while PXMP4 is not critical for overall peroxisome function under the conditions tested, it may have a role in the metabolism of (ether)lipids.


Loss of hepatic SMLR1 causes hepatosteatosis and protects against atherosclerosis due to decreased hepatic VLDL secretion.

  • Willemien van Zwol‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2023‎

The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine.


Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis.

  • Liviu Malureanu‎ et al.
  • The Journal of cell biology‎
  • 2010‎

Cdc20 is an activator of the anaphase-promoting complex/cyclosome that initiates anaphase onset by ordering the destruction of cyclin B1 and securin in metaphase. To study the physiological significance of Cdc20 in higher eukaryotes, we generated hypomorphic mice that express small amounts of this essential cell cycle regulator. In this study, we show that these mice are healthy and not prone to cancer despite substantial aneuploidy. Cdc20 hypomorphism causes chromatin bridging and chromosome misalignment, revealing a requirement for Cdc20 in efficient sister chromosome separation and chromosome-microtubule attachment. We find that cyclin B1 is newly synthesized during mitosis via cytoplasmic polyadenylation element-binding protein-dependent translation, causing its rapid accumulation between prometaphase and metaphase of Cdc20 hypomorphic cells. Anaphase onset is significantly delayed in Cdc20 hypomorphic cells but not when translation is inhibited during mitosis. These data reveal that Cdc20 is particularly rate limiting for cyclin B1 destruction because of regulated de novo synthesis of this cyclin after prometaphase onset.


The copper-transporting capacity of ATP7A mutants associated with Menkes disease is ameliorated by COMMD1 as a result of improved protein expression.

  • Willianne I M Vonk‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2012‎

Menkes disease (MD) is an X-linked recessive disorder characterized by copper deficiency resulting in a diminished function of copper-dependent enzymes. Most MD patients die in early childhood, although mild forms of MD have also been described. A diversity of mutations in the gene encoding of the Golgi-resident copper-transporting P(1B)-type ATPase ATP7A underlies MD. To elucidate the molecular consequences of the ATP7A mutations, various mutations in ATP7A associated with distinct phenotypes of MD (L873R, C1000R, N1304S, and A1362D) were analyzed in detail. All mutants studied displayed changes in protein expression and intracellular localization parallel to a dramatic decline in their copper-transporting capacity compared to ATP7A the wild-type. We restored these observed defects in ATP7A mutant proteins by culturing the cells at 30°C, which improves the quality of protein folding, similar to that which as has recently has been demonstrated for misfolded ATP7B, a copper transporter homologous to ATP7A. Further, the effect of the canine copper toxicosis protein COMMD1 on ATP7A function was examined as COMMD1 has been shown to regulate the proteolysis of ATP7B proteins. Interestingly, in addition to adjusted growth temperature, binding of COMMD1 partially restored the expression, subcellular localization, and copper-exporting activities of the ATP7A mutants. However, no effect of pharmacological chaperones was observed. Together, the presented data might provide a new direction for developing therapies to improve the residual exporting activity of unstable ATP7A mutant proteins, and suggests a potential role for COMMD1 in this process.


Chemokine-like receptor 1 deficiency does not affect the development of insulin resistance and nonalcoholic fatty liver disease in mice.

  • Nanda Gruben‎ et al.
  • PloS one‎
  • 2014‎

The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1), are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD), which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/-) mice and wild type (WT) mice into low-density lipoprotein receptor knock-out (Ldlr-/-) mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS). Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.


Cardiac function and architecture are maintained in a model of cardiorestricted overexpression of the prorenin-renin receptor.

  • Hasan Mahmud‎ et al.
  • PloS one‎
  • 2014‎

The (pro)renin-renin receptor, (P)RR has been claimed to be a novel element of the renin-angiotensin system (RAS). The function of (P)RR has been widely studied in renal and vascular pathology but the cardio-specific function of (P)RR has not been studied in detail. We therefore generated a transgenic mouse (Tg) with cardio-restricted (P)RR overexpression driven by the alpha-MHC promotor. The mRNA expression of (P)RR was ∼ 170-fold higher (P<0.001) and protein expression ∼ 5-fold higher (P<0.001) in hearts of Tg mice as compared to non-transgenic (wild type, Wt) littermates. This level of overexpression was not associated with spontaneous cardiac morphological or functional abnormalities in Tg mice. To assess whether (P)RR could play a role in cardiac hypertrophy, we infused ISO for 28 days, but this caused an equal degree of cardiac hypertrophy and fibrosis in Wt and Tg mice. In addition, ischemia-reperfusion injury was performed in Langendorff perfused isolated mouse hearts. We did not observe differences in parameters of cardiac function or damage between Wt and Tg mouse hearts under these conditions. Finally, we explored whether the hypoxia sensing response would be modulated by (P)RR using HeLa cells with and without (P)RR overexpression. We did not establish any effect of (P)RR on expression of genes associated with the hypoxic response. These results demonstrate that cardio-specific overexpression of (P)RR does not provoke phenotypical differences in the heart, and does not affect the hearts' response to stress and injury. It is concluded that increased myocardial (P)RR expression is unlikely to have a major role in pathological cardiac remodeling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: