Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 599 papers

Molecular characterization of marbled eel (Anguilla marmorata) gonadotropin subunits and their mRNA expression profiles during artificially induced gonadal development.

  • Hai Huang‎ et al.
  • General and comparative endocrinology‎
  • 2009‎

Three cDNA sequences encoding the gonadotropin subunits, common glycoprotein alpha subunit (GTHalpha), FSHbeta and LHbeta subunits were isolated from marbled eel. The cDNA of GTHalpha encodes 116 amino acids with a signal peptide of 24 amino acids and a mature peptide of 92 amino acids. The FSHbeta subunit consists of 127 amino acids with a 22 amino acid signal peptide and a 105 amino acid mature peptide, while the LHbeta subunit consists of 140 amino acids with a 24 amino acid signal peptide and a 116 amino acid mature peptide. Comparison of the deduced amino acid sequences of marbled eel GTHalpha, FSHbeta, and LHbeta with that of other fishes shows a high degree of conservation in the number of cysteine residues and potential N-linked glycosylation sites. The mRNA of GTHalpha, FSHbeta and LHbeta were not only detected in pituitary, but also in ovary and testes by RT-PCR. Quantitative realtime PCR analysis revealed that the GTHalpha and LHbeta transcriptional levels in pituitaries of female and male eels gradually increased during the artificially inducing gonadal development, and peaked at late vitellogenic stage and spermiation stage, respectively. FSHbeta mRNA in the pituitaries of female eels maintained a high level at previtellogenic stage, early vitellogenic stage as well as mid-vitellogenic stage but declined sharply at late vitellogenic stage and migratory nucleus stage. In male eels, the mRNA levels of FSHbeta in the pituitaries were higher at early spermatogenesis stage than at both late spermatogenesis stage and spermiation stage. These results suggested that FSH would be in control of initiation and maintenance of gonadal growth and gametogenesis, whereas LH would be involved in the final gonadal maturation and spermiation/ovulation in the tropic eel Anguilla marmorata.


Discovery of a novel prolactin in non-mammalian vertebrates: evolutionary perspectives and its involvement in teleost retina development.

  • Xigui Huang‎ et al.
  • PloS one‎
  • 2009‎

The three pituitary hormones, viz. prolactin (PRL), growth hormone (GH) and somatolactin (SL), together with the mammalian placental lactogen (PL), constitute a gene family of hormones with similar gene structure and encoded protein sequences. These hormones are believed to have evolved from a common ancestral gene through several rounds of gene duplication and subsequent divergence.


Possible single-nucleotide polymorphism loci associated with systemic sclerosis susceptibility: a genetic association study in a Chinese Han population.

  • Chang Shu‎ et al.
  • PloS one‎
  • 2014‎

The aim of this study was to confirm the association of RHOB and FAM167A-BLK gene polymorphisms with susceptibility to systemic sclerosis (SSc) in a Chinese Han population.


Interleukin 22 protects colorectal cancer cells from chemotherapy by activating the STAT3 pathway and inducing autocrine expression of interleukin 8.

  • Tingyu Wu‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2014‎

Resistance to chemotherapy is the major cause of colorectal cancer (CRC) treatment failure. The cytokine IL-22, which is produced by T cells and NK cells, is associated with tumorigenesis and tumor progression in cancers. However, the role of IL-22 in chemoresistance has not been investigated. We found that IL-22 levels in tumor tissues and peripheral blood were associated with chemoresistance and indicate poor prognosis for patients who received FOLFOX chemotherapy. In CRC cells, IL-22 was able to attenuate the cytotoxic and apoptosis-inducing effects of 5-FU and OXA by activating the STAT3 pathway and subsequently increasing the expression of anti-apoptotic genes. In addition, IL-22 conferred resistance to 5-FU and OXA by inducing IL-8 autocrine expression through STAT3 activation. Our findings identify IL-22 as a novel chemoresistance cytokine and may be a useful prognostic biomarker for CRC patients receiving FOLFOX chemotherapy.


MiR-99a antitumor activity in human breast cancer cells through targeting of mTOR expression.

  • Yu Hu‎ et al.
  • PloS one‎
  • 2014‎

MicroRNAs (miRNAs) play an important role in human tumorigenesis as oncogenes or tumor suppressors. miR-99a has been reported as a tumor suppressor gene in various cancers in humans. However, only limited information about the function of miR-99a in human breast cancers is available. Here we investigated the expression of miR-99a in breast cancer tissue specimens and its antitumor activity in breast cancer cells. We initially identified that the expression of miR-99a was significantly reduced in four breast cancer cell lines. More importantly, we found downregulation of miR-99a in breast cancer specimens from ten different patients. We then analyzed the mechanism of miR-99a in inhibiting tumorigenesis. Cell-based assays that showed overexpression of miR-99a not only reduced breast cancer cell viability by inducing accumulation of cells at sub-G1 phase and cell apoptosis, but also inhibited tumorigenicity in vivo. As a critical miR-99a target, we have shown that the function of mammalian target of rapamycin (mTOR) was greatly inhibited by miR-99a-based Luciferase report assay; overexpression of miR-99a reduced the expression of mTOR and its downstream phosphorylated proteins (p-4E-BP1 and p-S6K1). Similar to restoring miR-99a expression, mTOR downregulation suppressed cell viability and increased cell apoptosis, whereas restoration of mTOR expression significantly reversed the inhibitory effects of miR-99a on the mTOR/p-4E-BP1/p-S6K1 signal pathway and the miR-99a antitumor activity. In clinical specimens and cell lines, mTOR was commonly overexpressed and its protein levels were statistically inversely correlated with miR-99a expression. Taken together, these results have demonstrated that miR-99a antitumor activity is achieved by targeting the mTOR/p-4E-BP1/p-S6K1 pathway in human breast cancer cells. This study suggests a potential therapeutic strategy to effectively control breast cancer development.


Increased methylation at differentially methylated region of GNAS in infants born to gestational diabetes.

  • Danqing Chen‎ et al.
  • BMC medical genetics‎
  • 2014‎

Offspring of pregnancy complicated with gestational diabetes (GDM) are at high risk for metabolic diseases. The mechanisms behind the association of intrauterine exposure to GDM and high risk of health problems in later life remain largely unknown. The aim of this study was to clarify the alteration in methylation levels at differentially methylated regions (DMRs) of GNAS and IGF2 in fetuses of GDM women and to explore the possible mechanisms linking maternal GDM with high risk of metabolic diseases in later life of GDM offspring.


MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (Ascl2): impact on the epithelial-mesenchymal transition in colon cancer cells.

  • Yin Tian‎ et al.
  • The Journal of biological chemistry‎
  • 2014‎

Ascl2, a basic helix-loop-helix transcription factor, is a downstream target of WNT signaling that controls the fate of intestinal cryptic stem cells and colon cancer progenitor cells. However, its involvement in colon cancer and downstream molecular events is largely undefined; in particular, the mechanism by which Ascl2 regulates the plasticity of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) programs in colon cancer cells remains unknown. In this study, we systematically demonstrate that Ascl2 loss of function in colon cancer cells promotes MET by derepressing the expression of microRNA (miR)-200s (i.e. miR-200b, miR-200a, miR-429, miR-200c, and miR-141) and further activating their expression through a transcriptional mechanism that involves direct binding to the most proximal E-box (E-box2) in the miR-200b-a-429 promoter. Activation of miR-200s due to Ascl2 deficiency led to the inhibition of ZEB1/2 expression and the alteration of epithelial and mesenchymal features. Transfection of miR-200b, miR-200a, and miR-429 inhibitors into Ascl2-deficient colon cancer cells promoted the epithelial-mesenchymal transition in a reversible manner. Transfection of miR-200a or miR-429 inhibitors into Ascl2-deficient colon cancer cells increased cellular proliferation and migration. Ascl2 mRNA levels and the miR-200a, miR-200b, miR-200c, miR-141, or miR-429 levels in the colon cancerous samples were inversely correlated. These results provide the first evidence of a link between Ascl2 and miR-200s in the regulation of EMT-MET plasticity in colon cancer.


Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation.

  • Peter A Keyel‎ et al.
  • PloS one‎
  • 2014‎

Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA), which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation.


Luteolin prevents uric acid-induced pancreatic β-cell dysfunction.

  • Ying Ding‎ et al.
  • Journal of biomedical research‎
  • 2014‎

Elevated uric acid causes direct injury to pancreatic β-cells. In this study, we examined the effects of luteolin, an important antioxidant, on uric acid-induced β-cell dysfunction. We first evaluated the effect of luteolin on nitric oxide (NO) formation in uric acid-stimulated Min6 cells using the Griess method. Next, we performed transient transfection and reporter assays to measure transcriptional activity of nuclear factor (NF)-κB. Western blotting assays were also performed to assess the effect of luteolin on the expression of MafA and inducible NO synthase (iNOS) in uric acid-treated cells. Finally, we evaluated the effect of luteolin on uric acid-induced inhibition of glucose-stimulated insulin secretion (GSIS) in Min6 cells and freshly isolated mouse pancreatic islets. We found that luteolin significantly inhibited uric acid-induced NO production, which was well correlated with reduced expression of iNOS mRNA and protein. Furthermore, decreased activity of NF-κB was implicated in inhibition by luteolin of increased iNOS expression induced by uric acid. Besides, luteolin significantly increased MafA expression in Min6 cells exposed to uric acid, which was reversed by overexpression of iNOS. Moreover, luteolin prevented uric acid-induced inhibition of GSIS in both Min6 cells and mouse islets. In conclusion, luteolin protects pancreatic β-cells from uric acid-induced dysfunction and may confer benefit on the protection of pancreatic β-cells in hyperuricemia-associated diabetes.


GeMes, clusters of DNA methylation under genetic control, can inform genetic and epigenetic analysis of disease.

  • Yun Liu‎ et al.
  • American journal of human genetics‎
  • 2014‎

Epigenetic marks such as DNA methylation have generated great interest in the study of human disease. However, studies of DNA methylation have not established population-epigenetics principles to guide design, efficient statistics, or interpretation. Here, we show that the clustering of correlated DNA methylation at CpGs was similar to that of linkage-disequilibrium (LD) correlation in genetic SNP variation but for much shorter distances. Some clustering of methylated CpGs appeared to be genetically driven. Further, a set of correlated methylated CpGs related to a single SNP-based LD block was not always physically contiguous-segments of uncorrelated methylation as long as 300 kb could be interspersed in the cluster. Thus, we denoted these sets of correlated CpGs as GeMes, defined as potentially noncontiguous methylation clusters under the control of one or more methylation quantitative trait loci. This type of correlated methylation structure has implications for both biological functions of DNA methylation and for the design, analysis, and interpretation of epigenome-wide association studies.


USP16 Downregulation by Carboxyl-terminal Truncated HBx Promotes the Growth of Hepatocellular Carcinoma Cells.

  • Yu Qian‎ et al.
  • Scientific reports‎
  • 2016‎

Hepatitis B virus (HBV) infection is a major factor that contributes to the development of hepatocellular carcinoma (HCC). HBV X protein (HBx) has been shown to accelerate HCC progression by promoting tumour growth and metastasis. In the clinic, carboxyl-terminal truncated HBx (Ct-HBx) proteins are frequently present in HCC tumour tissues, but not in non-tumorous tissues. In this study, we analysed deubiquitinase expression profiles in cells with or without ectopic expression of the Ct-HBx proteins and observed that the expression of ubiquitin specific peptidase 16 (USP16) was substantially inhibited by Ct-HBx proteins. Liver tumour cells with forced down-regulation of USP16 exhibited increased capabilities for colony formation and tumour growth in vivo. In addition, USP16 inhibition promoted stem-like properties in tumour cells, as evidenced by their spheroid formation and chemo-responsiveness. Furthermore, ectopic expression of USP16 in tumour cells significantly abrogated the tumour promoting activities of the Ct-HBx proteins (HBxΔ35), leading to decreased tumour cell viability and tumour growth. In human HCCs, USP16 was frequently downregulated, and the decreased expression of USP16 was correlated with high tumour stages and poor differentiation status. Taken together, our study suggests that USP16 downregulation is a critical event in Ct-HBx-mediated promotion of HCC tumorigenicity and malignancy.


Endothelin-1 induces hypoxia inducible factor 1α expression in pulmonary artery smooth muscle cells.

  • Manxiang Li‎ et al.
  • FEBS letters‎
  • 2012‎

Endothelin-1 (ET-1) dose-dependently increased HIF1α expression in pulmonary artery smooth muscle cells (PASMCs). Inhibition of protein synthesis did not affect ET-1-induced HIF1α expression. The maximum effect of ET-1 was similar to that caused by proteasome inhibitor MG132. Further study indicates that ET-1 also dose-dependently stimulated calcineurin activation, specific calcineurin inhibitor cyclosporine A (CsA), abolished ET-1-induced HIF1α elevation, and reversed ET-1-induced RACK1 (receptor of activated protein kinase C 1) de-phosphorylation. Endothelin receptor A was found to specifically mediate the effects of ET-1. To examine whether RACK1 is particularly involved in proteasome-dependent HIF1α degradation, RACK1 was silenced by siRNA transfection. Cells lacking RACK1 exhibited significant elevation of HIF1α protein level. Taken together, our study suggests that ET-1 suppressed proteasome-dependent HIF1α degradation by calcineurin-dependent RACK1 de-phosphorylation.


APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice.

  • Hong Y Choi‎ et al.
  • eLife‎
  • 2013‎

ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer's disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP(-/-);LRP4(ECD/ECD) mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance. DOI:http://dx.doi.org/10.7554/eLife.00220.001.


Identification of aberrant microRNA expression pattern in pediatric gliomas by microarray.

  • Fatao Liu‎ et al.
  • Diagnostic pathology‎
  • 2013‎

Brain tumor remains the leading cause of disease-related death in children. Many studies have focused on the complex biological process involved in pediatric brain tumors but little is know about the possible role of microRNAs in the genesis of these tumors.


Estrogen suppresses adipogenesis by inhibiting S100A16 expression.

  • Rihua Zhang‎ et al.
  • Journal of molecular endocrinology‎
  • 2014‎

The aim of this study is to determine the effects of E2 on metabolic syndrome and the molecular mechanisms involving S100A16. Ovariectomized (OVX) rat models and mouse embryonic fibroblasts cell models were used. E2 loss in OVX rats induced body weight gain and central abdominal fat accumulation, which were ameliorated by E2 treatment under chow and high-fat diet (HFD) conditions. E2 decreased the expression of the adipocyte marker genes PPARγ, aP2, C/EBPα, and S100A16. E2 inhibited adipogenesis. Overexpression of S100A16 reversed the E2-induced adipogenesis effect. A luciferase assay showed that E2 inhibited the expression of S100A16. E2 treatment decreased body weight gain and central abdominal fat accumulation under both chow and HFD conditions. Also, E2 suppressed adipogenesis by inhibiting S100A16 expression.


Genome-wide analysis of the GH3 family in apple (Malus × domestica).

  • Huazhao Yuan‎ et al.
  • BMC genomics‎
  • 2013‎

Auxin plays important roles in hormone crosstalk and the plant's stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses.


Hematoporphyrin monomethyl ether combined with He-Ne laser irradiation-induced apoptosis in canine breast cancer cells through the mitochondrial pathway.

  • Huatao Li‎ et al.
  • Journal of veterinary science‎
  • 2016‎

Hematoporphyrin monomethyl ether (HMME) combined with He-Ne laser irradiation is a novel and promising photodynamic therapy (PDT)-induced apoptosis that can be applied in vitro on canine breast cancer cells. However, the exact pathway responsible for HMME-PDT in canine breast cancer cells remains unknown. CHMm cells morphology and apoptosis were analyzed using optical microscope, terminal deoxynucleotidyl transferase dUTP nick end labeling fluorescein staining and DNA ladder assays. Apoptotic pathway was further confirmed by Real-time-polymerase chain reaction and Western blotting assays. Our results showed that HMME-PDT induced significant changes in cell morphology, such as formation of cytoplasmic vacuoles and the gradual rounding of cells coupled with decreased size and detachment. DNA fragmentation and cell death was shown to occur in a time-dependent manner. Furthermore, HMME-PDT increased the activities of caspase-9 and caspase-3, and released cytochrome c from mitochondria into the cytoplasm. HMME-PDT also significantly increased both mRNA and protein levels of Bax and decreased P53 gene expression in a time-dependent manner, while the mRNA and protein expression of Bcl-2 were repressed. These alterations suggest that HMME-PDT induced CHMm cell apoptosis via the mitochondrial apoptosis pathway and had anti-canine breast cancer effects in vitro.


POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation.

  • Boshi Wang‎ et al.
  • Nature communications‎
  • 2015‎

Hyperactivation of the transcriptional factor E2F1 occurs frequently in human cancers and contributes to malignant progression. E2F1 activity is regulated by proteolysis mediated by the ubiquitin-proteasome system. However, the deubiquitylase that controls E2F1 ubiquitylation and stability remains undefined. Here we demonstrate that the deubiquitylase POH1 stabilizes E2F1 protein through binding to and deubiquitylating E2F1. Conditional knockout of Poh1 alleles results in reduced E2F1 expression in primary mouse liver cells. The POH1-mediated regulation of E2F1 expression strengthens E2F1-downstream prosurvival signals, including upregulation of Survivin and FOXM1 protein levels, and efficiently facilitates tumour growth of liver cancer cells in nude mice. Importantly, human hepatocellular carcinomas (HCCs) recapitulate POH1 regulation of E2F1 expression, as nuclear abundance of POH1 is increased in HCCs and correlates with E2F1 overexpression and tumour growth. Thus, our study suggests that the hyperactivated POH1-E2F1 regulation may contribute to the development of liver cancer.


Elevated serum transaminase activities were associated with increased serum levels of iron regulatory hormone hepcidin and hyperferritinemia risk.

  • Peng An‎ et al.
  • Scientific reports‎
  • 2015‎

Iron imbalance is a feature of liver damage. However, the biological correlation of serum hepcidin, a key regulator of iron homeostasis, with liver malfunction is undefined. To this end, we piloted the Chinese population studies to address whether hepcidin is linked to liver functionality. The serum hepcidin, ferritin, alanine transaminase, aspartate transaminase, gamma-glutamyltransferase and bilirubin were examined in two independent Chinese cohorts consisted of 3455 individuals. After adjustment for sex, age, body mass index, smoking habits, drinking categories and diabetic status, a positive association between hepcidin and alanine transaminase (ALT) (beta = 0.18 ± 0.01, P < 0.0001) was discovered using linear regression in a cohort consisting of 1813 individuals. This association was then validated in the second independent cohort of 1642 individuals (beta = 0.08 ± 0.02, P < 0.0001). Furthermore, consistent with cohort study, by applying both CCl4 and lipopolysaccharide induced mouse liver injury models, at least 2-fold elevations in hepcidin expression, serum ALT and inflammatory cytokine IL-6 were discovered during the initiation stage of liver injury. Our findings suggest that increased serum hepcidin may reflect a protective response to the iron status and elevated serum cytokines during liver injury. Additional studies are warranted to validate these findings and test their potential clinical relevance in patients.


Characterization of vasa in the gonads of different ploidy fish.

  • Fan Yu‎ et al.
  • Gene‎
  • 2015‎

Vasa is an essential gene for germ cell development belonging to the DEAD-box family. In this study, we comparatively analyzed the expression characteristics of vasa in diploids, triploids, and tetraploids. The sequences showed high similarity among these fish and other vertebrates, with characteristic domains. Tissue expression analysis revealed that vasa was expressed exclusively in the gonad of different ploidy fishes. During embryogenesis, vasa expression was lower in diploid than in triploid and tetraploid fish, caused by doubling of the genome of tetraploids and abnormal gonads in the triploid fish. In adults, vasa mRNA levels were significantly lower in the testes of sterile triploid fish compared with fertile diploids and tetraploids. In the ovaries, triploid fish showed consistently high expression from the non-breeding season to the breeding season. Immunohistochemistry and western blotting results also supported the abnormal expression of vasa in triploid gonads. This study demonstrates, for the first time, that fish of different ploidy exhibit different expression patterns of vasa that contribute to the differentiation of gonadal development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: