Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 37 papers

Nogo-B receptor promotes the chemoresistance of human hepatocellular carcinoma via the ubiquitination of p53 protein.

  • Chengyong Dong‎ et al.
  • Oncotarget‎
  • 2016‎

Nogo-B receptor (NgBR), a type I single transmembrane domain receptor is the specific receptor for Nogo-B. Our previous work demonstrated that NgBR is highly expressed in breast cancer cells, where it promotes epithelial mesenchymal transition (EMT), an important step in metastasis. Here, we show that both in vitro and in vivo increased expression of NgBR contributes to the increased chemoresistance of Bel7402/5FU cells, a stable 5-FU (5-Fluorouracil) resistant cell line related Bel7402 cells. NgBR knockdown abrogates S-phase arrest in Bel7402/5FU cells, which correlates with a reduction in G1/S phase checkpoint proteins p53 and p21. In addition, NgBR suppresses p53 protein levels through activation of the PI3K/Akt/MDM2 pathway, which promotes p53 degradation via the ubiquitin proteasome pathway and thus increases the resistance of human hepatocellular cancer cells to 5-FU. Furthermore, we found that NgBR expression is associated with a poor prognosis of human hepatocellular carcinoma (HCC) patients. These results suggest that targeting NgBR in combination with chemotherapeutic drugs, such as 5-FU, could improve the efficacy of current anticancer treatments.


PDIA6 modulates apoptosis and autophagy of non-small cell lung cancer cells via the MAP4K1/JNK signaling pathway.

  • Yuxin Bai‎ et al.
  • EBioMedicine‎
  • 2019‎

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with a poor prognosis. We previously found that protein disulfide isomerase family 6 (PDIA6) is upregulated in lung squamous cell carcinoma (LSCC). This study aimed to elucidate the clinical relevance, biological functions, and molecular mechanisms of PDIA6 in NSCLC.


Extracellular Vesicle-Associated mir-21 and mir-144 Are Markedly Elevated in Serum of Patients With Hepatocellular Carcinoma.

  • Chunwen Pu‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Aim: The aim of this study was to observe the possible change of microRNAs (miRNAs) in serum extracellular vesicles (EVs) from hepatocellular carcinoma (HCC) patients. Methods: The serum EVs were purified from 17 healthy donors, 16 chronic hepatitis B (CHB) patients and 24 HCC patients. The sequenced microRNAs in the purified EVs were analyzed to obtain highly differentially expressed genes (DEGs). Finally, the expression pattern of DEGs was validated using qRT-PCR. Results: We found that the expression of hsa-miR-21-5p and hsa-miR-144-3p were significantly higher in EVs and liver cancer tissues compared with serum and the distal liver tissues in HCC patients. The ratio of hsa-miR-144-3p/hsa-miR-21-5p was significantly decreased in the patients with CHB but significantly increased in patients with HCC developed from CHB (P < 0.05). Hsa-144-3p/hsa-miR-21-5p exhibited greater performance than alpha-fetoprotein (AUC 0.780, 95% CI 0.601-0.960, versus AUC 0.626, 95% CI 0.410-0.843) in ROC curve analysis. Conclusion: Extracellular vesicle-associated hsa-miR-21-5p and hsa-miR-144-3p are markedly elevated in serum of patients with HCC. The potential role of these microRNAs in the pathogenesis of HCC is worth of further study.


Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells.

  • Yingyan Wang‎ et al.
  • BMC cancer‎
  • 2008‎

Chemotherapy resistance remains a major obstacle for the treatment of small cell lung cancer (SCLC). Glucose-regulated protein 78 (GRP78), an endoplasmic reticulum chaperone, plays a critical role in chemotherapy resistance in some cancers. However, whether the suppression of the chaperone can enhance the sensitivity of chemotherapy in SCLC is still unclear.


Establishment of a new OSCC cell line derived from OLK and identification of malignant transformation-related proteins by differential proteomics approach.

  • Yan Dong‎ et al.
  • Scientific reports‎
  • 2015‎

Oral squamous cell carcinoma (OSCC) is usually preceded by the oral premalignant lesions, mainly oral leukoplakia (OLK) after repeated insults of carcinogens, tobacco. B(a)P and DMBA are key carcinogens in tobacco smoke. In the present study, for the first time we established the cancerous cell line OSCC-BD induced by B(a)P/DMBA mixture and transformed from dysplastic oral leukoplakia cell line DOK. Cell morphology, proliferation ability, migration ability, colony formation, and tumorigenicity were studied and confirmed the malignant characteristics of OSCC-BD cells. We further identified the differential proteins between DOK and OSCC-BD cells by stable isotope dimethyl labeling based quantitative proteomic method, which showed 18 proteins up-regulated and 16 proteins down-regulated with RSD < 8%. Differential proteins are mainly related to cell cycle, cell proliferation, DNA replication, RNA splicing and apoptosis. Abberant binding function, catalysis activity and transportor activity of differential proteins might contribute to the malignant transformation of OLK. Of the 34 identified differential proteins with RSD < 8%, 13 novel cancer-related proteins were reported in the present study. This study might provide a new insight into the mechanism of OLK malignant transformation and the potent biomarkers for early diagnosis, meanwhile further facilitate the application of the quantification proteomics to carcinogenesis research.


Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis.

  • Jiacheng Lou‎ et al.
  • Molecular cancer‎
  • 2020‎

Inactivation of the tumor suppressor p53 is critical for pathogenesis of glioma, in particular glioblastoma multiforme (GBM). MDM2, the main negative regulator of p53, binds to and forms a stable complex with p53 to regulate its activity. Hitherto, it is unclear whether the stability of the p53/MDM2 complex is affected by lncRNAs, in particular circular RNAs that are usually abundant and conserved, and frequently implicated in different oncogenic processes.


Nogo-B receptor is required for stabilizing TGF-β type I receptor and promotes the TGF-β1-induced epithelial-to-mesenchymal transition of non-small cell lung cancer.

  • Donghua Wu‎ et al.
  • Journal of Cancer‎
  • 2021‎

Background and Objective: Metastasis is the leading cause of death in patients with advanced non-small cell lung cancer (NSCLC), and epithelial-mesenchymal transition (EMT) is a crucial event in the metastasis of NSCLC. Our previous works demonstrated that NgBR promoted EMT in NSCLC. However, the molecular mechanism was unclear. Methods: TGF-β1 was used to induce EMT process of NSCLC cells. The biological functions of NgBR in promoting TGF-β1-induced NSCLC metastasis were studied by gain- and loss-of-function assays both in vitro and in vivo. The underlying mechanisms were studied using molecular biology assays. Results: We found that knockdown of NgBR inhibited TGF-β1-induced cell migration and invasion in NSCLC cells. In contrast, NgBR overexpression promoted TGF-β1-induced EMT of A549 cells. Mechanically, we found that knockdown of NgBR facilitated ubiquitination and degradation of TβRI, leading to downregulation of TβRI expression in NSCLC cells. Moreover, we confirmed a positive correlation between NgBR and TβRI in NSCLC tissues. Conclusions: Our findings provide a novel role of NgBR in modulating TGF-β1-induced EMT and propose NgBR as a new therapeutic target for treating NSCLC patients.


Identification of RNA-splicing factor Lsm12 as a novel tumor-associated gene and a potent biomarker in Oral Squamous Cell Carcinoma (OSCC).

  • Yan Dong‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2022‎

Oral squamous cell carcinoma (OSCC) is one of the common cancers worldwide. The lack of specific biomarkers and therapeutic targets leads to delayed diagnosis and hence the poor prognosis of OSCC patients. Thus, it is urgent to identify effective biomarkers and therapeutic targets for OSCC.


FAT1, a direct transcriptional target of E2F1, suppresses cell proliferation, migration and invasion in esophageal squamous cell carcinoma.

  • Yu Wang‎ et al.
  • Chinese journal of cancer research = Chung-kuo yen cheng yen chiu‎
  • 2019‎

Growing evidence indicates that FAT atypical cadherin 1 (FAT1) has aberrant genetic alterations and exhibits potential tumor suppressive function in esophageal squamous cell carcinoma (ESCC). However, the role of FAT1 in ESCC tumorigenesis remains not well elucidated. The aim of this study was to further investigate genetic alterations and biological functions of FAT1, as well as to explore its transcriptional regulation and downstream targets in ESCC.


lncRNA TM4SF1-AS1 Activates the PI3K/AKT Signaling Pathway and Promotes the Migration and Invasion of Lung Cancer Cells.

  • Fachen Zhou‎ et al.
  • Cancer management and research‎
  • 2020‎

Metastasis is a crucial cause of the high mortality in patients with lung cancer. Long non-coding RNAs (lncRNAs) are emerging as important players in the development and progression of human cancers. Here, we aimed to identify metastasis-associated lncRNA and to study its roles in the migration and invasion of lung cancer cells.


Quantitative Proteomic Profiling the Molecular Signatures of Annexin A5 in Lung Squamous Carcinoma Cells.

  • Bing Sun‎ et al.
  • PloS one‎
  • 2016‎

Lung cancer remains the leading cancer killer around the world. It's crucial to identify newer mechanism-based targets to effectively manage lung cancer. Annexin A5 (ANXA5) is a protein kinase C inhibitory protein and calcium dependent phospholipid-binding protein, which may act as an endogenous regulator of various pathophysiological processes. However, its molecular mechanism in lung cancer remains poorly understood. This study was designed to determine the mechanism of ANXA5 in lung cancer with a hope to obtain useful information to provide a new therapeutic target. We used a stable isotope dimethyl labeling based quantitative proteomic method to identify differentially expressed proteins in NSCLC cell lines after ANXA5 transfection. Out of 314 proteins, we identified 26 and 44 proteins that were down- and up-regulated upon ANXA5 modulation, respectively. The IPA analysis revealed that glycolysis and gluconeogenesis were the predominant pathways modulated by ANXA5. Multiple central nodes, namely HSPA5, FN1, PDIA6, ENO1, ALDOA, JUP and KRT6A appeared to occupy regulatory nodes in the protein-protein networks upon ANXA5 modulation. Taken together, ANXA5 appears to have pleotropic effects, as it modulates multiple key signaling pathways, supporting the potential usefulness of ANXA5 as a potential target in lung cancer. This study might provide a new insight into the mechanism of ANXA5 in lung cancer.


PDIA6 promotes the proliferation of HeLa cells through activating the Wnt/β-catenin signaling pathway.

  • Huijun Gao‎ et al.
  • Oncotarget‎
  • 2016‎

Protein disulfide isomerase family 6 (PDIA6) belongs to the protein disulfide isomerase (PDI) family, which function as isomerases and molecular chaperones. PDIA6 has recently been shown to promote the proliferation and growth of various types of human cancer cells; however the underlying molecular mechanism remains elusive. Here, we report that PDIA6 enhances the proliferation of HeLa cells through activation of the Wnt/β-catenin signaling pathway. Ectopic overexpression of PDIA6 in HeLa cells led to increased cell proliferation accompanied with accelerated cell cycle progression. Further mechanistic investigation demonstrated that overexpression of PDIA6 resulted in decreased phosphorylation of β-catenin at Ser45 and Ser33/Ser37/Thr41, while increased β-catenin nuclear accumulation, and upregulation of Wnt/ β-catenin signaling target genes cyclinD1 and c-myc, which was abolished by ubiquitin-proteasome inhibitor MG132. These results demonstrated that PDIA6 overexpression promoted the proliferation of HeLa cells by suppressing the phosphorylation of β-catenin, thereby inhibiting the degradation of β-catenin through the ubiquitin-proteasome pathway.


Sperm associated antigen 9 promotes oncogenic KSHV-encoded interferon regulatory factor-induced cellular transformation and angiogenesis by activating the JNK/VEGFA pathway.

  • Wan Li‎ et al.
  • PLoS pathogens‎
  • 2020‎

Kaposi's sarcoma (KS), caused by Kaposi's sarcoma-associated herpesvirus (KSHV), is a highly angioproliferative disseminated tumor of endothelial cells commonly found in AIDS patients. We have recently shown that KSHV-encoded viral interferon regulatory factor 1 (vIRF1) mediates KSHV-induced cell motility (PLoS Pathog. 2019 Jan 30;15(1):e1007578). However, the role of vIRF1 in KSHV-induced cellular transformation and angiogenesis remains unknown. Here, we show that vIRF1 promotes angiogenesis by upregulating sperm associated antigen 9 (SPAG9) using two in vivo angiogenesis models including the chick chorioallantoic membrane assay (CAM) and the matrigel plug angiogenesis assay in mice. Mechanistically, vIRF1 interacts with transcription factor Lef1 to promote SPAG9 transcription. vIRF1-induced SPAG9 promotes the interaction of mitogen-activated protein kinase kinase 4 (MKK4) with JNK1/2 to increase their phosphorylation, resulting in enhanced VEGFA expression, angiogenesis, cell proliferation and migration. Finally, genetic deletion of ORF-K9 from KSHV genome abolishes KSHV-induced cellular transformation and impairs angiogenesis. Our results reveal that vIRF1 transcriptionally activates SPAG9 expression to promote angiogenesis and tumorigenesis via activating JNK/VEGFA signaling. These novel findings define the mechanism of KSHV induction of the SPAG9/JNK/VEGFA pathway and establish the scientific basis for targeting this pathway for treating KSHV-associated cancers.


TROVE2 strengthens the anti-inflammatory effect via macrophage polarization by estrogen induction in abdominal aortic aneurysm.

  • Shanshan Chen‎ et al.
  • Life sciences‎
  • 2020‎

Abdominal Aortic Aneurysm (AAA) is a severe cardiovascular disease, with high mortality rate after acute rupture of blood vessels. However, the underlying pathogenesis of different morbidity between men and women remains unclear. In the present study, we first selected four datasets including 68 AAA and 32 control samples from published data on GEO database, and analyzed them by data mining. The integrative analysis found a total of 368 differentially expressed genes in E2-related AAA. Next, regulatory mechanism networks among these target genes were predicted, and four genes were identified as key nodes in the network, which play a major role in the immune system. We focused on the role of monocytes/macrophages in the development of cardiovascular diseases to further explore the role of estrogen in the polarization of monocytes/macrophage, the mRNA level of the four genes was validated by RT-PCR in RAW264.7 cells treated with β-estradiol (E2), diarylpropionitrile (DPN), 1,3,5-Tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), fulvestrant or vehicle. The results showed that the mRNA level and protein level of TROVE2 was significantly increased in estrogen or estrogen receptor agonist-treated groups. Moreover, estrogen affected the transformation of macrophages to M2 phenotype by detecting M1- and M2-related indicator genes at the mRNA level. Flow cytometry demonstrated that the TROVE2 deficiency led to a notable decrease in the level of M2 phenotype marker protein CD206. In conclusion, our results suggest that E2 can promote the expression of TROVE2, which is closely related to the M2-phenotype transformation of macrophages.


Curcumol inhibits ferritinophagy to restrain hepatocyte senescence through YAP/NCOA4 in non-alcoholic fatty liver disease.

  • Xiaoyu Qi‎ et al.
  • Cell proliferation‎
  • 2021‎

In recent years, cellular senescence has attracted a lot of interest in researchers due to its involvement in non-alcoholic fatty liver disease (NAFLD). However, the mechanism of cellular senescence is not clear. The purpose of this study was to investigate the effect of curcumol on hepatocyte senescence in NAFLD and the molecular mechanisms implicated.


Injecting Immunosuppressive M2 Macrophages Alleviates the Symptoms of Periodontitis in Mice.

  • Yibin Miao‎ et al.
  • Frontiers in molecular biosciences‎
  • 2020‎

Periodontitis is the second most common oral disease affecting tooth-supporting structures. The tissue damage is mainly initiated by the excessive secretion of proinflammatory cytokines by immune cells. Macrophages are a type of antigen-presenting cells that influence the adaptive immunity function. We used a unique set of cytokines, i.e., a combination of IL-4, IL-13, and IL-10, to stimulate macrophages into a subset of M2 polarization cells that express much higher levels of ARG-1, CD206, and PDL-2 genes. The cells' anti-inflammatory potential was tested with mixed-lymphocyte reaction assay, which showed that this subset of macrophages could increase IL-2 secretion and suppress IL-17, IL-6, and TNF-α secretion by splenocytes. The gram-negative bacterial species Porphyromonas gingivalis was used to initiate an inflammatory process in murine periodontal tissues. In the meantime, cell injection therapy was used to dampen the excessive immune reaction and suppress osteoclast differentiation during periodontitis. Maxilla was collected and analyzed for osteoclast formation. The results indicated that mice in the cell injection group exhibited less osteoclast activity within the periodontal ligament region than in the periodontitis group. Moreover, the injection of M2 macrophages sustained the regulatory population ratio. Therefore, the M2 macrophages induced under the stimulation of IL-4, IL-13, and IL-10 combined had tremendous immune modulation ability. Injecting these cells into local periodontal tissue could effectively alleviate the symptom of periodontitis.


Expression of NgBR is highly associated with estrogen receptor alpha and survivin in breast cancer.

  • Bei Wang‎ et al.
  • PloS one‎
  • 2013‎

NgBR is a type I receptor with a single transmembrane domain and was identified as a specific receptor for Nogo-B. Our recent findings demonstrated that NgBR binds farnesylated Ras and recruits Ras to the plasma membrane, which is a critical step required for the activation of Ras signaling in human breast cancer cells and tumorigenesis. Here, we first use immunohistochemistry and real-time PCR approaches to examine the expression patterns of Nogo-B and NgBR in both normal and breast tumor tissues. Then, we examine the relationship between NgBR expression and molecular subtypes of breast cancer, and the roles of NgBR in estrogen-dependent survivin signaling pathway. Results showed that NgBR and Nogo-B protein were detected in both normal and breast tumor tissues. However, the expression of Nogo-B and NgBR in breast tumor tissue was much stronger than in normal breast tissue. The statistical analysis demonstrated that NgBR is highly associated with ER-positive/HER2-negative breast cancer. We also found that the expression of NgBR has a strong correlation with the expression of survivin, which is a well-known apoptosis inhibitor. The correlation between NgBR and survivin gene expression was further confirmed by real-time PCR. In vitro results also demonstrated that estradiol induces the expression of survivin in ER-positive T47D breast tumor cells but not in ER-negative MDA-MB-468 breast tumor cells. NgBR knockdown with siRNA abolishes estradiol-induced survivin expression in ER-positive T47D cells but not in ER-negative MDA-MB-468 cells. In addition, estradiol increases the expression of survivin and cell growth in ER-positive MCF-7 and T47D cells whereas knockdown of NgBR with siRNA reduces estradiol-induced survivin expression and cell growth. In summary, these results indicate that NgBR is a new molecular marker for breast cancer. The data suggest that the expression of NgBR may be essential in promoting ER-positive tumor cell proliferation via survivin induction in breast cancer.


Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration.

  • Sha Du‎ et al.
  • PloS one‎
  • 2014‎

Fructose-bisphosphate aldolase A (ALDOA) is a key enzyme in glycolysis and is responsible for catalyzing the reversible conversion of fructose-1,6-bisphosphate to glyceraldehydes-3-phosphate and dihydroxyacetone phosphate. ALDOA contributes to various cellular functions such as muscle maintenance, regulation of cell shape and mobility, striated muscle contraction, actin filament organization and ATP biosynthetic process. Here, we reported that ALDOA is a highly expressed in lung squamous cell carcinoma (LSCC) and its expression level is correlated with LSCC metastasis, grades, differentiation status and poor prognosis. Depletion of ALDOA expression in the lung squamous carcinoma NCI-H520 cells reduces the capabilities of cell motility and tumorigenesis. These data suggest that ALDOA could be a potential marker for LSCC metastasis and a therapeutic target for drug development.


Comprehensive proteome quantification reveals NgBR as a new regulator for epithelial-mesenchymal transition of breast tumor cells.

  • Baofeng Zhao‎ et al.
  • Journal of proteomics‎
  • 2015‎

Nogo-B receptor (NgBR) is a type I receptor and specifically binds to ligand Nogo-B. Our previous work has shown that NgBR is highly expressed in human breast invasive ductal carcinoma. Here, comprehensive proteome quantification was performed to examine the alteration of protein expression profile in MDA-MB-231 breast tumor cells after knocking down NgBR using lentivirus-mediated shRNA approach. Among a total of 1771 proteins feasibly quantified, 994 proteins were quantified in two biological replicates with RSD <50%. There are 122 proteins significantly down-regulated in NgBR knockdown MDA-MB-231 breast tumor cells, such as vimentin and S100A4, well-known markers for mesenchymal cells, and CD44, a stemness indicator. The decrease of vimentin, S100A4 and CD44 protein expression levels was further confirmed by Western blot analysis. MDA-MB-231 cells are typical breast invasive ductal carcinoma cells showing mesenchymal phenotype. Cell morphology analysis demonstrates NgBR knockdown in MDA-MB-231 cells results in reversibility of epithelial-mesenchymal transition (EMT), which is one of the major mechanisms involved in breast cancer metastasis. Furthermore, we demonstrated that NgBR knockdown in MCF-7 cells significantly prevented the TGF-β-induced EMT process as determined by the morphology change, and staining of E-cadherin intercellular junction as well as the decreased expression of vimentin.


Curcumol Suppresses CCF-Mediated Hepatocyte Senescence Through Blocking LC3B-Lamin B1 Interaction in Alcoholic Fatty Liver Disease.

  • Xiaoyu Qi‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Recent studies indicated that hepatocyte senescence plays an important role in the development of alcoholic fatty liver disease (AFLD), suggesting that inhibition of hepatocyte senescence might be a potential strategy for AFLD treatment. The present study investigated the effect of curcumol, a component from the root of Rhizoma Curcumae, on hepatocyte senescence in AFLD and the underlying mechanisms implicated. The results showed that curcumol was able to reduce lipid deposition and injury in livers of ethanol liquid diet-fed mice and in ethanol-treated LO2 cells. Both in vivo and in vitro studies indicated that supplementation with curcumol effectively alleviated ethanol-induced cellular senescence as manifested by a decrease in senescence-associated β-galactosidase (SA-β-gal) activity, a downregulated expression of senescence-related markers p16 and p21, and dysfunction of the telomere and telomerase system. Consistently, treatment with curcumol led to a marked suppression of ethanol-induced formation of cytoplasmic chromatin fragments (CCF) and subsequent activation of cGAS-STING, resulting in a significant reduction in senescence-associated secretory phenotype (SASP)-related inflammatory factors' secretion. Further studies indicated that curcumol's inhibition of CCF formation might be derived from blocking the interaction of LC3B with lamin B1 and maintaining nuclear membrane integrity. Taken together, these results indicated that curcumol was capable of ameliorating AFLD through inhibition of hepatocyte senescence, which might be attributed to its blocking of LC3B and lamin B1 interaction and subsequent inactivation of the CCF-cGAS-STING pathway. These findings suggest a promising use of curcumol in the treatment of AFLD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: