Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid.

  • Ixchelt Cuaranta-Monroy‎ et al.
  • Stem cell research‎
  • 2014‎

Adipocyte differentiation and function have become the major research targets due to the increasing interest in obesity and related metabolic conditions. Although, late stages of adipogenesis have been extensively studied, the early phases remain poorly understood. Here we present that supplementing ascorbic acid (AsA) to the adipogenic differentiation cocktail enables the robust and efficient differentiation of mouse embryonic stem cells (mESCs) to mature adipocytes. Such ESC-derived adipocytes mimic the gene-expression profile of subcutaneous isolated adipocytes in vivo remarkably well, much closer than 3T3-L1 derived ones. Moreover, the differentiated cells are in a monolayer, allowing a broad range of genome-wide studies in early and late stages of adipocyte differentiation to be performed.


Immunomodulatory capacity of the serotonin receptor 5-HT2B in a subset of human dendritic cells.

  • Attila Szabo‎ et al.
  • Scientific reports‎
  • 2018‎

Serotonin is a monoamine neurotransmitter that signals through a wide array of receptors (5-HT1-7) many of which are also involved in immune processes. Dendritic cells (DCs) are crucial players in immune defense by bridging innate and adaptive immune responses via their vast repertoire of pattern recognition receptors and antigen-presenting capability. Although serotonin is known to influence immunity at many levels, cell type-specific expression and function of its receptors remains poorly understood. Here we aimed to study 5-HT1-7 expression and function in CD1a- and CD1a+ human monocyte-derived DCs (moDCs). We found that the 5-HT2B receptor-subtype is solely expressed by the inflammatory CD1a+ moDC subset. Specific 5-HT2B activation potently inhibited TLR2, TLR3, and TLR7/8-induced proinflammatory cytokine and chemokine (TNF-α, IL-6, IL-8, IP-10, IL-12) but not type I interferon-β responses. 5-HT2B agonism also interfered with the polarization of CD1a+ moDC-primed CD4+ T cells towards inflammatory Th1 and Th17 effector lymphocytes. Here we report the subset-specific expression and immunomodulatory function of 5-HT2B in human moDCs. Our results expand the biological role of 5-HT2B which may act not only as a neurotransmitter receptor, but also as an important modulator of both innate and adaptive immune responses.


The Nuclear Receptor PPARγ Controls Progressive Macrophage Polarization as a Ligand-Insensitive Epigenomic Ratchet of Transcriptional Memory.

  • Bence Daniel‎ et al.
  • Immunity‎
  • 2018‎

Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization.


The transcription factor EGR2 is the molecular linchpin connecting STAT6 activation to the late, stable epigenomic program of alternative macrophage polarization.

  • Bence Daniel‎ et al.
  • Genes & development‎
  • 2020‎

Macrophages polarize into functionally distinct subtypes while responding to microenvironmental cues. The identity of proximal transcription factors (TFs) downstream from the polarization signals are known, but their activity is typically transient, failing to explain the long-term, stable epigenomic programs developed. Here, we mapped the early and late epigenomic changes of interleukin-4 (IL-4)-induced alternative macrophage polarization. We identified the TF, early growth response 2 (EGR2), bridging the early transient and late stable gene expression program of polarization. EGR2 is a direct target of IL-4-activated STAT6, having broad action indispensable for 77% of the induced gene signature of alternative polarization, including its autoregulation and a robust, downstream TF cascade involving PPARG. Mechanistically, EGR2 binding results in chromatin opening and the recruitment of chromatin remodelers and RNA polymerase II. Egr2 induction is evolutionarily conserved during alternative polarization of mouse and human macrophages. In the context of tissue resident macrophages, Egr2 expression is most prominent in the lung of a variety of species. Thus, EGR2 is an example of an essential and evolutionarily conserved broad acting factor, linking transient polarization signals to stable epigenomic and transcriptional changes in macrophages.


Expression of Somatostatin Receptor Subtypes (SSTR-1-SSTR-5) in Pediatric Hematological and Oncological Disorders.

  • Kristof Harda‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Hematological and oncological disorders represent leading causes of childhood mortality. Neuropeptide somatostatin (SST) has been previously demonstrated in various pediatric tumors, but limited information exists on the expression and characteristics of SST receptors (SSTR) in hematological and oncological disorders of children. We aimed to investigate the expression of mRNA for SSTR subtypes (SSTR-1-5) in 15 pediatric hematological/oncological specimens by RT-PCR. The presence and binding characteristics of SSTRs were further studies by ligand competition assay. Our results show that the pediatric tumor samples highly expressed mRNA for the five SSTR subtypes with various patterns. The mRNA for SSTR-2 was detected in all specimens independently of their histological type. A Hodgkin lymphoma sample co-expressed mRNA for all five SSTR subtypes. SSTR-3 and SSTR-5 were detected only in malignant specimens, such as rhabdomyosarcoma, Hodgkin lymphoma, acute lymphoblastic leukemia, and a single nonmalignant condition, hereditary spherocytosis. The incidence of SSTR-1 and SSTR-4 was similar (60%) in the 15 specimens investigated. Radioligand binding studies demonstrated the presence of specific SSTRs and high affinity binding of SST analogs in pediatric solid tumors investigated. The high incidence of SSTRs in hematological and oncological disorders in children supports the merit of further investigation of SSTRs as molecular targets for diagnosis and therapy.


The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p.

  • Zsolt Czimmerer‎ et al.
  • Genome medicine‎
  • 2016‎

IL-4-driven alternative macrophage activation and proliferation are characteristic features of both antihelminthic immune responses and wound healing in contrast to classical macrophage activation, which primarily occurs during inflammatory responses. The signaling pathways defining the genome-wide microRNA expression profile as well as the cellular functions controlled by microRNAs during alternative macrophage activation are largely unknown. Hence, in the current work we examined the regulation and function of IL-4-regulated microRNAs in human and mouse alternative macrophage activation.


Analyses of association between PPAR gamma and EPHX1 polymorphisms and susceptibility to COPD in a Hungarian cohort, a case-control study.

  • Andras Penyige‎ et al.
  • BMC medical genetics‎
  • 2010‎

In addition to smoking, genetic predisposition is believed to play a major role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Genetic association studies of new candidate genes in COPD may lead to improved understanding of the pathogenesis of the disease.


The histopathology of labial salivary glands in primary Sjögren's syndrome: focusing on follicular helper T cells in the inflammatory infiltrates.

  • Krisztina Szabo‎ et al.
  • Mediators of inflammation‎
  • 2014‎

Recently, we revealed the importance of follicular helper T cells (T(FH)) in the pathogenesis of primary Sjögren's syndrome (pSS). In the present study, we focused on the site of the inflammation and determined the composition of lymphocyte infiltration in labial salivary gland (LSG) biopsies with special emphasis on T(FH) and germinal center B cells. We selected tissue blocks obtained from ten patients at the time of disease onset. Detection of cell specific markers was performed with immunohistochemical and immunofluorescence stainings. We evaluated patients' clinical and laboratory features retrospectively and assessed the relation between disease course and early histopathological findings. LSG biopsies were graded based on the extension and arrangement level of periductal inflammatory cell infiltrates. T(FH) cell markers (CD84, PD-1, and Bcl-6) occurred predominantly in more organized structures with higher focus scores. The coexpression of CD3 and Bcl-6 markers clearly identified T(FH) cells close to Bcl-6(+) B cells with the typical formation of germinal centers. Systemic features were developed later in the disease course only in patients with highly structured infiltrates and the presence of T(FH) cells. Our observations suggest that the presence of T(FH) cells in LSGs at the disease onset may predict a more pronounced clinical course of pSS.


PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells.

  • Istvan Szatmari‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

Dendritic cells (DCs) expressing CD1d, a molecule responsible for lipid antigen presentation, are capable of enhancing natural killer T (iNKT) cell proliferation. The signals controlling CD1 expression and lipid antigen presentation are poorly defined. We have shown previously that stimulation of the lipid-activated transcription factor, peroxisome proliferator-activated receptor (PPAR)gamma, indirectly regulates CD1d expression. Here we demonstrate that PPARgamma, turns on retinoic acid synthesis by inducing the expression of retinol and retinal metabolizing enzymes such as retinol dehydrogenase 10 and retinaldehyde dehydrogenase type 2 (RALDH2). PPARgamma-regulated expression of these enzymes leads to an increase in the intracellular generation of all-trans retinoic acid (ATRA) from retinol. ATRA regulates gene expression via the activation of the retinoic acid receptor (RAR)alpha in human DCs, and RARalpha acutely regulates CD1d expression. The retinoic acid-induced elevated expression of CD1d is coupled to enhanced iNKT cell activation. Furthermore, in vivo relevant lipids such as oxidized low-density lipoprotein can also elicit retinoid signaling leading to CD1d up-regulation. These data show that regulation of retinoid metabolism and signaling is part of the PPARgamma-controlled transcriptional events in DCs. The uncovered mechanisms allow the DCs to respond to altered lipid homeostasis by changing CD1 gene expression.


Labelled regulatory elements are pervasive features of the macrophage genome and are dynamically utilized by classical and alternative polarization signals.

  • Attila Horvath‎ et al.
  • Nucleic acids research‎
  • 2019‎

The concept of tissue-specific gene expression posits that lineage-determining transcription factors (LDTFs) determine the open chromatin profile of a cell via collaborative binding, providing molecular beacons to signal-dependent transcription factors (SDTFs). However, the guiding principles of LDTF binding, chromatin accessibility and enhancer activity have not yet been systematically evaluated. We sought to study these features of the macrophage genome by the combination of experimental (ChIP-seq, ATAC-seq and GRO-seq) and computational approaches. We show that Random Forest and Support Vector Regression machine learning methods can accurately predict chromatin accessibility using the binding patterns of the LDTF PU.1 and four other key TFs of macrophages (IRF8, JUNB, CEBPA and RUNX1). Any of these TFs alone were not sufficient to predict open chromatin, indicating that TF binding is widespread at closed or weakly opened chromatin regions. Analysis of the PU.1 cistrome revealed that two-thirds of PU.1 binding occurs at low accessible chromatin. We termed these sites labelled regulatory elements (LREs), which may represent a dormant state of a future enhancer and contribute to macrophage cellular plasticity. Collectively, our work demonstrates the existence of LREs occupied by various key TFs, regulating specific gene expression programs triggered by divergent macrophage polarizing stimuli.


The IL-4/STAT6/PPARγ signaling axis is driving the expansion of the RXR heterodimer cistrome, providing complex ligand responsiveness in macrophages.

  • Bence Daniel‎ et al.
  • Nucleic acids research‎
  • 2018‎

Retinoid X receptor (RXR) is an obligate heterodimeric partner of several nuclear receptors (NRs), and as such a central component of NR signaling regulating the immune and metabolic phenotype of macrophages. Importantly, the binding motifs of RXR heterodimers are enriched in the tissue-selective open chromatin regions of resident macrophages, suggesting roles in subtype specification. Recent genome-wide studies revealed that RXR binds to thousands of sites in the genome, but the mechanistic details how the cistrome is established and serves ligand-induced transcriptional activity remained elusive. Here we show that IL-4-mediated macrophage plasticity results in a greatly extended RXR cistrome via both direct and indirect actions of the transcription factor STAT6. Activation of STAT6 leads to chromatin remodeling and RXR recruitment to de novo enhancers. In addition, STAT6 triggers a secondary transcription factor wave, including PPARγ. PPARγ appears to be indispensable for the development of RXR-bound de novo enhancers, whose activities can be modulated by the ligands of the PPARγ:RXR heterodimer conferring ligand selective cellular responses. Collectively, these data reveal the mechanisms leading to the dynamic extension of the RXR cistrome and identify the lipid-sensing enhancer sets responsible for the appearance of ligand-preferred gene signatures in alternatively polarized macrophages.


Dynamic transcriptional control of macrophage miRNA signature via inflammation responsive enhancers revealed using a combination of next generation sequencing-based approaches.

  • Zsolt Czimmerer‎ et al.
  • Biochimica et biophysica acta. Gene regulatory mechanisms‎
  • 2018‎

MicroRNAs are important components of the post-transcriptional fine-tuning of macrophage gene expression in physiological and pathological conditions. However, the mechanistic underpinnings and the cis-acting genomic factors of how macrophage polarizing signals induce miRNA expression changes are not well characterized. Therefore, we systematically evaluated the transcriptional basis underlying the inflammation-mediated regulation of macrophage microRNome using the combination of different next generation sequencing datasets. We investigated the LPS-induced expression changes at mature miRNA and pri-miRNA levels in mouse macrophages utilizing a small RNA-seq method and publicly available GRO-seq dataset, respectively. Next, we identified an enhancer set associated with LPS-responsive pri-miRNAs based on publicly available H3K4 mono-methylation-specific ChIP-seq and GRO-seq datasets. This enhancer set was further characterized by the combination of publicly available ChIP and ATAC-seq datasets. Finally, direct interactions between the miR-155-coding genomic region and its distal regulatory elements were identified using a 3C-seq approach. Our analysis revealed 15 robustly LPS-regulated miRNAs at the transcriptional level. In addition, we found that these miRNA genes are associated with an inflammation-responsive enhancer network. Based on NFκB-p65 and JunB transcription factor binding, we showed two distinct enhancer subsets associated with LPS-activated miRNAs that possess distinct epigenetic characteristics and LPS-responsiveness. Finally, our 3C-seq analysis revealed the LPS-induced extensive reorganization of the pri-miR-155-associated functional chromatin domain as well as chromatin loop formation between LPS-responsive enhancers and the promoter region. Our genomic approach successfully combines various genome-wide datasets and allows the identification of the putative regulatory elements controlling miRNA expression in classically activated macrophages.


In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury.

  • Andreas Patsalos‎ et al.
  • The Journal of physiology‎
  • 2017‎

The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration.


The epigenetic state of IL-4-polarized macrophages enables inflammatory cistromic expansion and extended synergistic response to TLR ligands.

  • Zsolt Czimmerer‎ et al.
  • Immunity‎
  • 2022‎

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Peripheral blood gene expression patterns discriminate among chronic inflammatory diseases and healthy controls and identify novel targets.

  • Bertalan Mesko‎ et al.
  • BMC medical genomics‎
  • 2010‎

Chronic inflammatory diseases including inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis), psoriasis and rheumatoid arthritis (RA) afflict millions of people worldwide, but their pathogenesis is still not well understood. It is also not well known if distinct changes in gene expression characterize these diseases and if these patterns can discriminate between diseased and control patients and/or stratify the disease. The main focus of our work was the identification of novel markers that overlap among the 3 diseases or discriminate them from each other.


The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages.

  • Zsolt Czimmerer‎ et al.
  • Immunity‎
  • 2018‎

The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli.


A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules.

  • Zsolt Czimmerer‎ et al.
  • PloS one‎
  • 2013‎

Short regulatory RNA-s have been identified as key regulators of gene expression in eukaryotes. They have been involved in the regulation of both physiological and pathological processes such as embryonal development, immunoregulation and cancer. One of their relevant characteristics is their high stability, which makes them excellent candidates for use as biomarkers. Their number is constantly increasing as next generation sequencing methods reveal more and more details of their synthesis. These novel findings aim for new detection methods for the individual short regulatory RNA-s in order to be able to confirm the primary data and characterize newly identified subtypes in different biological conditions. We have developed a flexible method to design RT-qPCR assays that are very sensitive and robust. The newly designed assays were tested extensively in samples from plant, mouse and even human formalin fixed paraffin embedded tissues. Moreover, we have shown that these assays are able to quantify endogenously generated shRNA molecules. The assay design method is freely available for anyone who wishes to use a robust and flexible system for the quantitative analysis of matured regulatory RNA-s.


De novo steroidogenesis in tumor cells drives bone metastasis and osteoclastogenesis.

  • Luca F Sandor‎ et al.
  • Cell reports‎
  • 2024‎

Osteoclasts play a central role in cancer-cell-induced osteolysis, but the molecular mechanisms of osteoclast activation during bone metastasis formation are incompletely understood. By performing RNA sequencing on a mouse breast carcinoma cell line with higher bone-metastatic potential, here we identify the enzyme CYP11A1 strongly upregulated in osteotropic tumor cells. Genetic deletion of Cyp11a1 in tumor cells leads to a decreased number of bone metastases but does not alter primary tumor growth and lung metastasis formation in mice. The product of CYP11A1 activity, pregnenolone, increases the number and function of mouse and human osteoclasts in vitro but does not alter osteoclast-specific gene expression. Instead, tumor-derived pregnenolone strongly enhances the fusion of pre-osteoclasts via prolyl 4-hydroxylase subunit beta (P4HB), identified as a potential interaction partner of pregnenolone. Taken together, our results demonstrate that Cyp11a1-expressing tumor cells produce pregnenolone, which is capable of promoting bone metastasis formation and osteoclast development via P4HB.


STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

  • Attila Szanto‎ et al.
  • Immunity‎
  • 2010‎

Peroxisome proliferator-activated receptor γ (PPARγ) is a lipid-activated transcription factor regulating lipid metabolism and inflammatory response in macrophages and dendritic cells (DCs). These immune cells exposed to distinct inflammatory milieu show cell type specification as a result of altered gene expression. We demonstrate here a mechanism how inflammatory molecules modulate PPARγ signaling in distinct subsets of cells. Proinflammatory molecules inhibited whereas interleukin-4 (IL-4) stimulated PPARγ activity in macrophages and DCs. Furthermore, IL-4 signaling augmented PPARγ activity through an interaction between PPARγ and signal transducer and activators of transcription 6 (STAT6) on promoters of PPARγ target genes, including FABP4. Thus, STAT6 acts as a facilitating factor for PPARγ by promoting DNA binding and consequently increasing the number of regulated genes and the magnitude of responses. This interaction, underpinning cell type-specific responses, represents a unique way of controlling nuclear receptor signaling by inflammatory molecules in immune cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: