Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 92 papers

A multi-omic analysis of human naïve CD4+ T cells.

  • Christopher J Mitchell‎ et al.
  • BMC systems biology‎
  • 2015‎

Cellular function and diversity are orchestrated by complex interactions of fundamental biomolecules including DNA, RNA and proteins. Technological advances in genomics, epigenomics, transcriptomics and proteomics have enabled massively parallel and unbiased measurements. Such high-throughput technologies have been extensively used to carry out broad, unbiased studies, particularly in the context of human diseases. Nevertheless, a unified analysis of the genome, epigenome, transcriptome and proteome of a single human cell type to obtain a coherent view of the complex interplay between various biomolecules has not yet been undertaken. Here, we report the first multi-omic analysis of human primary naïve CD4+ T cells isolated from a single individual.


Sulfation of fulvestrant by human liver cytosols and recombinant SULT1A1 and SULT1E1.

  • Vineetha Koroth Edavana‎ et al.
  • Pharmacogenomics and personalized medicine‎
  • 2011‎

Fulvestrant (Faslodex™) is a pure antiestrogen that is approved to treat hormone receptor-positive metastatic breast cancer in postmenopausal women. Previous studies have demonstrated that fulvestrant metabolism in humans involves cytochromes P450 and UDP-glucuronosyltransferases (UGTs). To date, fulvestrant sulfation has not been characterized. This study examined fulvestrant sulfation with nine recombinant sulfotransferases and found that only SULT1A1 and SULT1E1 displayed catalytic activity toward this substrate, with K(m) of 4.2 ± 0.99 and 0.2 ± 0.16 μM, respectively. In vitro assays of 104 human liver cytosols revealed marked individual variability that was highly correlated with β-naphthol sulfation (SULT1A1 diagnostic substrate; r = 0.98, P < 0.0001), but not with 17β-estradiol sulfation (SULT1E1 diagnostic substrate; r = 0.16, P = 0.10). Fulvestrant sulfation was correlated with both SULT1A1*1/2 genotype (P value = 0.023) and copy number (P < 0.0001). These studies suggest that factors influencing SULT1A1/1E1 tissue expression and/or enzymatic activity could influence the efficacy of fulvestrant therapy.


Comparison of RNA-seq and microarray-based models for clinical endpoint prediction.

  • Wenqian Zhang‎ et al.
  • Genome biology‎
  • 2015‎

Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.


Comprehensive RNA-Seq transcriptomic profiling across 11 organs, 4 ages, and 2 sexes of Fischer 344 rats.

  • Ying Yu‎ et al.
  • Scientific data‎
  • 2014‎

The rat is used extensively by the pharmaceutical, regulatory, and academic communities for safety assessment of drugs and chemicals and for studying human diseases; however, its transcriptome has not been well studied. As part of the SEQC (i.e., MAQC-III) consortium efforts, a comprehensive RNA-Seq data set was constructed using 320 RNA samples isolated from 10 organs (adrenal gland, brain, heart, kidney, liver, lung, muscle, spleen, thymus, and testes or uterus) from both sexes of Fischer 344 rats across four ages (2-, 6-, 21-, and 104-week-old) with four biological replicates for each of the 80 sample groups (organ-sex-age). With the Ribo-Zero rRNA removal and Illumina RNA-Seq protocols, 41 million 50 bp single-end reads were generated per sample, yielding a total of 13.4 billion reads. This data set could be used to identify and validate new rat genes and transcripts, develop a more comprehensive rat transcriptome annotation system, identify novel gene regulatory networks related to tissue specific gene expression and development, and discover genes responsible for disease and drug toxicity and efficacy.


Similarities and differences between variants called with human reference genome HG19 or HG38.

  • Bohu Pan‎ et al.
  • BMC bioinformatics‎
  • 2019‎

Reference genome selection is a prerequisite for successful analysis of next generation sequencing (NGS) data. Current practice employs one of the two most recent human reference genome versions: HG19 or HG38. To date, the impact of genome version on SNV identification has not been rigorously assessed.


A standardized fold change method for microarray differential expression analysis used to reveal genes involved in acute rejection in murine allograft models.

  • Weichen Zhou‎ et al.
  • FEBS open bio‎
  • 2018‎

Murine transplantation models are used extensively to research immunological rejection and tolerance. Here we studied both murine heart and liver allograft models using microarray technology. We had difficulty in identifying genes related to acute rejections expressed in both heart and liver transplantation models using two standard methodologies: Student's t test and linear models for microarray data (Limma). Here we describe a new method, standardized fold change (SFC), for differential analysis of microarray data. We estimated the performance of SFC, the t test and Limma by generating simulated microarray data 100 times. SFC performed better than the t test and showed a higher sensitivity than Limma where there is a larger value for fold change of expression. SFC gave better reproducibility than Limma and the t test with real experimental data from the MicroArray Quality Control platform and expression data from a mouse cardiac allograft. Eventually, a group of significant overlapping genes was detected by SFC in the expression data of mouse cardiac and hepatic allografts and further validated with the quantitative RT-PCR assay. The group included genes for important reactions of transplantation rejection and revealed functional changes of the immune system in both heart and liver of the mouse model. We suggest that SFC can be utilized to stably and effectively detect differential gene expression and to explore microarray data in further studies.


DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome.

  • Heng Luo‎ et al.
  • Nucleic acids research‎
  • 2014‎

Drug-drug interactions (DDIs) may cause serious side-effects that draw great attention from both academia and industry. Since some DDIs are mediated by unexpected drug-human protein interactions, it is reasonable to analyze the chemical-protein interactome (CPI) profiles of the drugs to predict their DDIs. Here we introduce the DDI-CPI server, which can make real-time DDI predictions based only on molecular structure. When the user submits a molecule, the server will dock user's molecule across 611 human proteins, generating a CPI profile that can be used as a feature vector for the pre-constructed prediction model. It can suggest potential DDIs between the user's molecule and our library of 2515 drug molecules. In cross-validation and independent validation, the server achieved an AUC greater than 0.85. Additionally, by investigating the CPI profiles of predicted DDI, users can explore the PK/PD proteins that might be involved in a particular DDI. A 3D visualization of the drug-protein interaction will be provided as well. The DDI-CPI is freely accessible at http://cpi.bio-x.cn/ddi/.


Genetic associations with micronutrient levels identified in immune and gastrointestinal networks.

  • Melissa J Morine‎ et al.
  • Genes & nutrition‎
  • 2014‎

The discovery of vitamins and clarification of their role in preventing frank essential nutrient deficiencies occurred in the early 1900s. Much vitamin research has understandably focused on public health and the effects of single nutrients to alleviate acute conditions. The physiological processes for maintaining health, however, are complex systems that depend upon interactions between multiple nutrients, environmental factors, and genetic makeup. To analyze the relationship between these factors and nutritional health, data were obtained from an observational, community-based participatory research program of children and teens (age 6-14) enrolled in a summer day camp in the Delta region of Arkansas. Assessments of erythrocyte S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma homocysteine (Hcy) and 6 organic micronutrients (retinol, 25-hydroxy vitamin D3, pyridoxal, thiamin, riboflavin, and vitamin E), and 1,129 plasma proteins were performed at 3 time points in each of 2 years. Genetic makeup was analyzed with 1 M SNP genotyping arrays, and nutrient status was assessed with 24-h dietary intake questionnaires. A pattern of metabolites (met_PC1) that included the ratio of erythrocyte SAM/SAH, Hcy, and 5 vitamins were identified by principal component analysis. Met_PC1 levels were significantly associated with (1) single-nucleotide polymorphisms, (2) levels of plasma proteins, and (3) multilocus genotypes coding for gastrointestinal and immune functions, as identified in a global network of metabolic/protein-protein interactions. Subsequent mining of data from curated pathway, network, and genome-wide association studies identified genetic and functional relationships that may be explained by gene-nutrient interactions. The systems nutrition strategy described here has thus associated a multivariate metabolite pattern in blood with genes involved in immune and gastrointestinal functions.


Comparative analysis of human protein-coding and noncoding RNAs between brain and 10 mixed cell lines by RNA-Seq.

  • Geng Chen‎ et al.
  • PloS one‎
  • 2011‎

In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome.


Revealing the missing expressed genes beyond the human reference genome by RNA-Seq.

  • Geng Chen‎ et al.
  • BMC genomics‎
  • 2011‎

The complete and accurate human reference genome is important for functional genomics researches. Therefore, the incomplete reference genome and individual specific sequences have significant effects on various studies.


Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome--clozapine-induced agranulocytosis as a case study.

  • Lun Yang‎ et al.
  • PLoS computational biology‎
  • 2011‎

In the era of personalized medical practice, understanding the genetic basis of patient-specific adverse drug reaction (ADR) is a major challenge. Clozapine provides effective treatments for schizophrenia but its usage is limited because of life-threatening agranulocytosis. A recent high impact study showed the necessity of moving clozapine to a first line drug, thus identifying the biomarkers for drug-induced agranulocytosis has become important. Here we report a methodology termed as antithesis chemical-protein interactome (CPI), which utilizes the docking method to mimic the differences in the drug-protein interactions across a panel of human proteins. Using this method, we identified HSPA1A, a known susceptibility gene for CIA, to be the off-target of clozapine. Furthermore, the mRNA expression of HSPA1A-related genes (off-target associated systems) was also found to be differentially expressed in clozapine treated leukemia cell line. Apart from identifying the CIA causal genes we identified several novel candidate genes which could be responsible for agranulocytosis. Proteins related to reactive oxygen clearance system, such as oxidoreductases and glutathione metabolite enzymes, were significantly enriched in the antithesis CPI. This methodology conducted a multi-dimensional analysis of drugs' perturbation to the biological system, investigating both the off-targets and the associated off-systems to explore the molecular basis of an adverse event or the new uses for old drugs.


Transcriptional profiling of Chinese medicinal formula Si-Wu-Tang on breast cancer cells reveals phytoestrogenic activity.

  • Mandy Liu‎ et al.
  • BMC complementary and alternative medicine‎
  • 2013‎

Si-Wu-Tang (SWT), comprising the combination of four herbs, Paeoniae, Angelicae, Chuanxiong and Rehmanniae, is one of the most popular traditional oriental medicines for women's diseases. In our previous study, the microarray gene expression profiles of SWT on breast cancer cell line MCF-7 were found similar to the effect of β-estradiol (E2) on MCF-7 cells in the Connectivity Map database.


Two new ArrayTrack libraries for personalized biomedical research.

  • Joshua Xu‎ et al.
  • BMC bioinformatics‎
  • 2010‎

Recent advances in high-throughput genotyping technology are paving the way for research in personalized medicine and nutrition. However, most of the genetic markers identified from association studies account for a small contribution to the total risk/benefit of the studied phenotypic trait. Testing whether the candidate genes identified by association studies are causal is critically important to the development of personalized medicine and nutrition. An efficient data mining strategy and a set of sophisticated tools are necessary to help better understand and utilize the findings from genetic association studies.


The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35.

  • Pei Y Liu‎ et al.
  • Nature communications‎
  • 2019‎

The majority of patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein over-expression die of the disease. Here our analyses of RNA sequencing data identify the long noncoding RNA lncNB1 as one of the transcripts most over-expressed in MYCN-amplified, compared with MYCN-non-amplified, human neuroblastoma cells and also the most over-expressed in neuroblastoma compared with all other cancers. lncNB1 binds to the ribosomal protein RPL35 to enhance E2F1 protein synthesis, leading to DEPDC1B gene transcription. The GTPase-activating protein DEPDC1B induces ERK protein phosphorylation and N-Myc protein stabilization. Importantly, lncNB1 knockdown abolishes neuroblastoma cell clonogenic capacity in vitro and leads to neuroblastoma tumor regression in mice, while high levels of lncNB1 and RPL35 in human neuroblastoma tissues predict poor patient prognosis. This study therefore identifies lncNB1 and its binding protein RPL35 as key factors for promoting E2F1 protein synthesis, N-Myc protein stability and N-Myc-driven oncogenesis, and as therapeutic targets.


Whole genome and exome sequencing reference datasets from a multi-center and cross-platform benchmark study.

  • Yongmei Zhao‎ et al.
  • Scientific data‎
  • 2021‎

With the rapid advancement of sequencing technologies, next generation sequencing (NGS) analysis has been widely applied in cancer genomics research. More recently, NGS has been adopted in clinical oncology to advance personalized medicine. Clinical applications of precision oncology require accurate tests that can distinguish tumor-specific mutations from artifacts introduced during NGS processes or data analysis. Therefore, there is an urgent need to develop best practices in cancer mutation detection using NGS and the need for standard reference data sets for systematically measuring accuracy and reproducibility across platforms and methods. Within the SEQC2 consortium context, we established paired tumor-normal reference samples and generated whole-genome (WGS) and whole-exome sequencing (WES) data using sixteen library protocols, seven sequencing platforms at six different centers. We systematically interrogated somatic mutations in the reference samples to identify factors affecting detection reproducibility and accuracy in cancer genomes. These large cross-platform/site WGS and WES datasets using well-characterized reference samples will represent a powerful resource for benchmarking NGS technologies, bioinformatics pipelines, and for the cancer genomics studies.


A seven-gene prognostic signature predicts overall survival of patients with lung adenocarcinoma (LUAD).

  • Aisha Al-Dherasi‎ et al.
  • Cancer cell international‎
  • 2021‎

Lung adenocarcinoma (LUAD) is one of the most common types in the world with a high mortality rate. Despite advances in treatment strategies, the overall survival (OS) remains short. Our study aims to establish a reliable prognostic signature closely related to the survival of LUAD patients that can better predict prognosis and possibly help with individual monitoring of LUAD patients.


A global metagenomic map of urban microbiomes and antimicrobial resistance.

  • David Danko‎ et al.
  • Cell‎
  • 2021‎

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions.

  • Binsheng Gong‎ et al.
  • Genome biology‎
  • 2021‎

Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.


Overexpression of CD99 is associated with tumor adaptiveness and indicates the tumor recurrence and therapeutic responses in gliomas.

  • Erfei Shang‎ et al.
  • Translational oncology‎
  • 2023‎

Glioma undergoes adaptive changes, leading to poor prognosis and resistance to treatment. CD99 influences the migration and invasion of glioma cells and plays an oncogene role. However, whether CD99 can affect the adaptiveness of gliomas is still lacking in research, making its clinical value underestimated. Here, we enrolled our in-house and public multiomics datasets for bioinformatic analysis and conducted immunohistochemistry staining to investigate the role of CD99 in glioma adaptive response and its clinical implications. CD99 is expressed in more adaptative glioma subtypes and cell states. Under hypoxic conditions, CD99 is upregulated in glioma cells and is associated with angiogenesis and metabolic adaptations. Gliomas with over-expressed CD99 also increased the immunosuppressive tumor-associated macrophages. The relevance with tumor adaptiveness of CD99 presented clinical significance. We discovered that CD99 overexpression is associated with short-time recurrence and validated its prognostic value. Additionally, Glioma patients with high expression of CD99 were resistant to chemotherapy and radiotherapy. The CD99 expression was also related to anti-angiogenic and immune checkpoint inhibitor therapy response. Inhibitors of the PI3K-AKT pathway have therapeutic potential against CD99-overexpressing gliomas. Our study identified CD99 as a biomarker characterizing the adaptive response in glioma. Gliomas with high CD99 expression are highly tolerant to stress conditions such as hypoxia and antitumor immunity, making treatment responses dimmer and tumor progression. Therefore, for patients with CD99-overexpressing gliomas, tumor adaptiveness should be fully considered during treatment to avoid drug resistance, and closer clinical monitoring should be carried out to improve the prognosis.


Differences of molecular events driving pathological and radiological progression of lung adenocarcinoma.

  • Jun Shang‎ et al.
  • EBioMedicine‎
  • 2023‎

Ground-glass opacity (GGO)-like lung adenocarcinoma (LUAD) has been detected increasingly in the clinic and its inert property and superior survival indicate unique biological characteristics. However, we do not know much about them, which hampers identification of key reasons for the inert property of GGO-like LUAD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: