Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 50 papers

Genome-wide microarray comparison reveals downstream genes of Pax6 in the developing mouse cerebellum.

  • Thomas J Ha‎ et al.
  • The European journal of neuroscience‎
  • 2012‎

The Pax6 transcription factor is expressed in cerebellar granule cells and when mutated, as in the Sey/Sey mouse, produces granule cells with disturbed survival and migration and with defects in neurite extension. The impact of Pax6 on other genes in the context of cerebellar development has not been identified. In this study, we performed transcriptome comparisons between wildtype and Pax6-null whole cerebellar tissue at embryonic day (E) 13.5, 15.5 and 18.5 using Affymetrix arrays (U74Av2). Statistical analyses identified 136 differentially regulated transcripts (FDR 0.05, 1.2-fold change cutoff) over time in Pax6-null cerebellar tissue. In parallel we examined the Math1-null granuloprival cerebellum and identified 228 down-regulated transcripts (FDR 0.05, 1.2-fold change cutoff). The intersection of these two microarray datasets produced a total of 21 differentially regulated transcripts. For a subset of the identified transcripts, we used qRT-PCR to validate the microarray data and demonstrated the expression in the rhombic lip lineage and differential expression in Pax6-null cerebellum with in situ hybridisation analysis. The candidate genes identified in this way represent direct or indirect Pax6-downstream genes involved in cerebellar development.


Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis.

  • Kyle D Fink‎ et al.
  • Stem cell research & therapy‎
  • 2013‎

Huntington's disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat on the short arm of chromosome 4 resulting in cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Neuropathologically, HD is characterized by a specific loss of medium spiny neurons in the caudate and the putamen, as well as subsequent neuronal loss in the cerebral cortex. The transgenic R6/2 mouse model of HD carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops some of the behavioral characteristics that are analogous to the human form of the disease. Mesenchymal stem cells (MSCs) have shown the ability to slow the onset of behavioral and neuropathological deficits following intrastriatal transplantation in rodent models of HD. Use of MSCs derived from umbilical cord (UC) offers an attractive strategy for transplantation as these cells are isolated from a noncontroversial and inexhaustible source and can be harvested at a low cost. Because UC MSCs represent an intermediate link between adult and embryonic tissue, they may hold more pluripotent properties than adult stem cells derived from other sources.


Neuropilin-1 expression characterizes T follicular helper (Tfh) cells activated during B cell differentiation in human secondary lymphoid organs.

  • Amédée Renand‎ et al.
  • PloS one‎
  • 2013‎

T follicular helper (Tfh) cells play an essential role in the development of antigen-specific B cell immunity. Tfh cells regulate the differentiation and survival of activated B cells outside and inside germinal centers (GC) of secondary lymphoid organs. They act through cognate contacts with antigen-presenting B cells, but there is no current marker to specifically identify those Tfh cells which productively interact with B cells. Here we show that neuropilin 1 (Nrp1), a cell surface receptor, is selectively expressed by a subset of Tfh cells in human secondary lymphoid organs. Nrp1 expression on Tfh cells correlates with B cell differentiation in vivo and in vitro, is transient, and can be induced upon co-culture with autologous memory B cells in a cell contact-dependent manner. Comparative analysis of ex vivo Nrp1(+) and Nrp1(-) Tfh cells reveals gene expression modulation during activation. Finally, Nrp1 is expressed by malignant Tfh-like cells in a severe case of angioimmunoblastic T-cell lymphoma (AITL) associated with elevated terminal B cell differentiation. Thus, Nrp1 is a specific marker of Tfh cells cognate activation in humans, which may prove useful as a prognostic factor and a therapeutic target in neoplastic diseases associated with Tfh cells activity.


CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease.

  • Nivya Kolli‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Huntington's disease (HD) is a fatal neurodegenerative genetic disease characterized by a loss of neurons in the striatum. It is caused by a mutation in the Huntingtin gene (HTT) that codes for the protein huntingtin (HTT). The mutant Huntingtin gene (mHTT) contains extra poly-glutamine (CAG) repeats from which the translated mutant huntingtin proteins (mHTT) undergo inappropriate post-translational modifications, conferring a toxic gain of function, in addition to its non-functional property. In order to curb the production of the mHTT, we have constructed two CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associate protein) plasmids, among which one nicks the DNA at untranslated region upstream to the open reading frame (uORF), and the other nicks the DNA at exon1-intron boundary. The primary goal of this study was to apply this plasmid into mesenchymal stem cells (MSCs) extracted from the bone-marrow of YAC128 mice, which carries the transgene for HD. Our results suggest that the disruption of uORF through CRISPR-Cas9 influences the translation of mHTT negatively and, to a lesser extent, disrupts the exon1-intron boundary, which affects the translation of the mHTT. These findings also revealed the pattern of the nucleotide addition or deletion at the site of the DNA-nick in this model.


Effects of age and strain on cell proliferation in the mouse rostral migratory stream.

  • Anna Poon‎ et al.
  • Neurobiology of aging‎
  • 2013‎

The number of neural progenitor cells (NPCs) decreases with advancing age, and the mechanisms responsible for this decline is unclear. Here, we demonstrate the importance of genetics as a modulator for the age-related decline in NPCs. We systematically quantified the number of proliferating NPCs in the rostral migratory stream, the rostral extension of the subventricular zone, in 9 inbred mouse strains from 3 to 18 months of age. A striking negative impact of age and significant interstrain differences in the number of NPCs was detected at 3 and 12 months of age. Extended proliferative profiles of C57BL/6J and DBA/2J from 3 to 24 months of age revealed differential dynamics of the age-related decline in NPCs. Statistically significant interaction effects for age and strain were detected over the 3- to 7-month period. Strain differences were mapped to several genetic loci suggesting complex genetic control of NPC proliferation at different ages. Furthermore, correlational analyses revealed the differential regulation of cell proliferation and genes that may underlie the proliferative deficits of NPCs in the aging brain.


Rapid Detection of Zika Virus in Urine Samples and Infected Mosquitos by Reverse Transcription-Loop-Mediated Isothermal Amplification.

  • Laura E Lamb‎ et al.
  • Scientific reports‎
  • 2018‎

Infection with Zika virus (ZIKV) is of growing concern since infection is associated with the development of congenital neurological disease. Quantitative reverse transcription PCR (qRT-PCR) has been the standard for ZIKV detection; however, Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) may allow for faster and cheaper testing. Studies have suggested that ZIKV detection in urine is more sensitive and has a longer window of detection compared to serum and saliva. The objective of this study was to develop a urine diagnostic test that could be completed in under 30 minutes. Urine samples spiked with ZIKV or dengue virus were tested using RT-LAMP as well as by conventional quantitative qRT-PCR. These techniques were then validated using crude lysates made from ZIKV infected mosquitoes in addition to urine and serum samples from ZIKV infected patients. RT-LAMP specifically detected ZIKV in urine and serum for ZIKV infected patients and crude mosquito lysates. This test was performed in under 30 minutes and did not require RNA extraction from urine nor mosquitos. This approach could be used for monitoring of exposed individuals, especially pregnant women, couples wanting to conceive, or individuals with suspicious symptoms as well as surveillance of mosquito populations.


DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma.

  • Deanna M Patmore‎ et al.
  • Developmental cell‎
  • 2020‎

DEAD-Box Helicase 3 X-Linked (DDX3X) is frequently mutated in the Wingless (WNT) and Sonic hedghog (SHH) subtypes of medulloblastoma-the commonest malignant childhood brain tumor, but whether DDX3X functions as a medulloblastoma oncogene or tumor suppressor gene is not known. Here, we show that Ddx3x regulates hindbrain patterning and development by controlling Hox gene expression and cell stress signaling. In mice predisposed to Wnt- or Shh medulloblastoma, Ddx3x sensed oncogenic stress and suppressed tumor formation. WNT and SHH medulloblastomas normally arise only in the lower and upper rhombic lips, respectively. Deletion of Ddx3x removed this lineage restriction, enabling both medulloblastoma subtypes to arise in either germinal zone. Thus, DDX3X is a medulloblastoma tumor suppressor that regulates hindbrain development and restricts the competence of cell lineages to form medulloblastoma subtypes.


Cellular localization and development of neuronal intranuclear inclusions in striatal and cortical neurons in R6/2 transgenic mice.

  • Christopher A Meade‎ et al.
  • The Journal of comparative neurology‎
  • 2002‎

The cellular localization and development of neuronal intranuclear inclusions (NIIs) in cortex and striatum of R6/2 HD transgenic mice were studied to ascertain the relationship of NIIs to symptom formation in these mice and gain clues regarding the possible relationship of NII formation to neuropathology in Huntington's disease (HD). All NIIs observed in R6/2 mice were ubiquitinated, and no evidence was observed for a contribution to them from wild-type huntingtin; they were first observed in cortex and striatum at 3.5 weeks of age. In cortex, NIIs increased rapidly in size and prevalence after their appearance. Generally, cortical projection neurons developed NIIs more rapidly than cortical interneurons containing calbindin or parvalbumin. Few cortical somatostatinergic interneurons, however, formed NIIs. In striatum, calbindinergic projection neurons and parvalbuminergic interneurons rapidly formed NIIs, but they formed more gradually in cholinergic interneurons, and few somatostatinergic interneurons developed NIIs. Striatal NIIs tended to be smaller than those in cortex. The early accumulation of NIIs in cortex and striatum in R6/2 mice is consistent with the early appearance of motor and learning abnormalities in these mice, and the eventual pervasiveness of NIIs at ages at which severe abnormalities are evident is consistent with their contribution to a neuronal dysfunction underlying the abnormalities. That cortex develops larger NIIs than striatum, however, is inconsistent with the preferential loss of striatal neurons in HD but is consistent with recent evidence of early morphological abnormalities in cortical neurons in HD. That calbindinergic and parvalbuminergic striatal neurons develop large NIIs is consistent with a contribution of nuclear aggregate formation to their high degree of vulnerability in HD.


Reductions in behavioral deficits and neuropathology in the R6/2 mouse model of Huntington's disease following transplantation of bone-marrow-derived mesenchymal stem cells is dependent on passage number.

  • Julien Rossignol‎ et al.
  • Stem cell research & therapy‎
  • 2015‎

Huntington's disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat (greater than 38) on the short arm of chromosome 4, resulting in loss and dysfunction of neurons in the neostriatum and cortex, leading to cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Although an effective treatment for HD has remained elusive, current studies using transplants of bone-marrow-derived mesenchymal stem cells provides considerable promise. This study further investigates the efficacy of these transplants with a focus on comparing how passage number of these cells may affect subsequent efficacy following transplantation.


Cross-Species Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes.

  • Yiai Tong‎ et al.
  • Cancer cell‎
  • 2015‎

Choroid plexus carcinomas (CPCs) are poorly understood and frequently lethal brain tumors with few treatment options. Using a mouse model of the disease and a large cohort of human CPCs, we performed a cross-species, genome-wide search for oncogenes within syntenic regions of chromosome gain. TAF12, NFYC, and RAD54L co-located on human chromosome 1p32-35.3 and mouse chromosome 4qD1-D3 were identified as oncogenes that are gained in tumors in both species and required for disease initiation and progression. TAF12 and NFYC are transcription factors that regulate the epigenome, whereas RAD54L plays a central role in DNA repair. Our data identify a group of concurrently gained oncogenes that cooperate in the formation of CPC and reveal potential avenues for therapy.


The Cerebellum and SIDS: Disordered Breathing in a Mouse Model of Developmental Cerebellar Purkinje Cell Loss during Recovery from Hypercarbia.

  • Michele A Calton‎ et al.
  • Frontiers in neurology‎
  • 2016‎

The cerebellum assists coordination of somatomotor, respiratory, and autonomic actions. Purkinje cell alterations or loss appear in sudden infant death and sudden death in epilepsy victims, possibly contributing to the fatal event. We evaluated breathing patterns in 12 wild-type (WT) and Lurcher mutant mice with 100% developmental cerebellar Purkinje cell loss under baseline (room air), and recovery from hypercapnia, a concern in sudden death events. Six mutant and six WT mice were exposed to 4-min blocks of increasing CO2 (2, 4, 6, and 8%), separated by 4-min recovery intervals in room air. Breath-by-breath patterns, including depth of breathing and end-expiratory pause (EEP) durations during recovery, were recorded. No baseline genotypic differences emerged. However, during recovery, EEP durations significantly lengthened in mutants, compared to WT mice, following the relatively low levels of CO2 exposure. Additionally, mutant mice exhibited signs of post-sigh disordered breathing during recovery following each exposure. Developmental cerebellar Purkinje cell loss significantly affects compensatory breathing patterns following mild CO2 exposure, possibly by inhibiting recovery from elevated CO2. These data implicate cerebellar Purkinje cells in the ability to recover from hypercarbia, suggesting that neuropathologic changes or loss of these cells contribute to inadequate ventilatory recovery to increased environmental CO2. Multiple disorders, including sudden infant death syndrome (SIDS) and sudden unexpected death in epilepsy (SUDEP), appear to involve both cardiorespiratory failure and loss or injury to cerebellar Purkinje cells; the findings support the concept that such neuropathology may precede and exert a prominent role in these fatal events.


Wls provides a new compartmental view of the rhombic lip in mouse cerebellar development.

  • Joanna Yeung‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Math1 is the defining molecule of the cerebellar rhombic lip and Pax6 is downstream in the Math1 pathway. In the present study, we discover that Wntless (Wls) is a novel molecular marker of the cells in the interior face of the rhombic lip throughout normal mouse cerebellar development. Wls expression is found complementary to the expression of Math1 and Pax6, which are localized to the exterior face of the rhombic lip. To determine the interaction between these molecules, we examine the loss-of-Math1 or loss-of-Pax6 in the cerebellum, i.e., the Math1-null and Pax6-null (Sey) mutant cerebella. The presence of Wls-positive cells in the Math1-null rhombic lip indicates that Wls expression is independent of Math1. In the Sey mutant cerebellum, there is an expansion of Wls-expressing cells into regions that are normally colonized by Pax6-expressing cells. The ectopic expression of Wls in the Pax6-null cerebellum suggests a negative interaction between Wls-expressing cells and Pax6-positive cells. These findings suggest that the rhombic lip is dynamically patterned by the expression of Wls, Math1, and Pax6. We also examine five rhombic lip cell markers (Wls, Math1, Pax6, Lmx1a, and Tbr2) to identify four molecularly distinct compartments in the rhombic lip during cerebellar development. The existence of spatial compartmentation in the rhombic lip and the interplay between Wls, Math1, and Pax6 in the rhombic lip provides novel views of early cerebellar development.


Wls expression in the rhombic lip orchestrates the embryonic development of the mouse cerebellum.

  • Joanna Yeung‎ et al.
  • Neuroscience‎
  • 2017‎

Wntless (Wls) is implicated in the Wnt signaling pathway by regulating the secretion of Wnt molecules. During brain development, Wls is expressed in the isthmic organizer (ISO) and rhombic lip (RL). Wls regulates Wnt1 secretion at the ISO which is required to induce midbrain-hindbrain structures. However, Wls function in the RL is not known. Here, we employed Nestin-cre to delete Wls specifically in the RL during mid-gestation. The loss-of-Wls leads to an abnormal RL during development and cerebellar vermis hypoplasia at birth. The Wls conditional knockout (cKO) has rudimentary foliation with an absence of Bergmann glia fibers in the external germinal layer (EGL). The Wls-cKO cerebellum also exhibits ectopia of several cell types and aberrations in granule cell organization. Finally, there is a loss of 85% of unipolar brush cells. From these findings, Wls-expressing cells in the rhombic lip are implicated in the orchestration of cerebellar development.


Effects of Bone-Marrow-Derived MSC Transplantation on Functional Recovery in a Rat Model of Spinal Cord Injury: Comparisons of Transplant Locations and Cell Concentrations.

  • Jessica J Matyas‎ et al.
  • Cell transplantation‎
  • 2017‎

Spinal cord injury (SCI) is a widely disabling condition, constraining those affected by it to wheelchairs and requiring intense daily care and assistance. Cell replacement therapies, targeting regeneration of cells in the injured cord, are currently gaining momentum in the field of SCI research. Previous studies indicate that mesenchymal stem cells (MSCs) can reduce functional deficits through immunomodulation and production of trophic factors in a variety of neurological disorders. The present study assessed the efficacy of transplanted bone marrow-derived MSCs at different concentrations and locations for promoting functional recovery following SCI. Although effects were modest, MSCs facilitated an increase in the base of support, as measured by increased distance between the plantar surface of the hind paws, following incomplete contusive SCI, and reduced the density of astroglial scarring. Varying the concentrations or locations of transplanted cells did not provide additional benefits on these measures. These findings indicate that MSC transplants are safe at relatively high concentrations and confer therapeutic benefits that, when used as an adjunctive treatment, could significantly enhance functional recovery following SCI.


Tart Cherry Extract and Omega Fatty Acids Reduce Behavioral Deficits, Gliosis, and Amyloid-Beta Deposition in the 5xFAD Mouse Model of Alzheimer's Disease.

  • Zackary Bowers‎ et al.
  • Brain sciences‎
  • 2021‎

Combined treatments using polyphenols and omega fatty acids provide several therapeutic benefits for a variety of age-related disorders, including Alzheimer's disease (AD). Previously, we found a commercial product, Total Body Rhythm (TBR), consisting of tart cherry extract, a potent polyphenol, and omega fatty acids, significantly reduced memory, and neuropathological deficits in the 192 IgG-saporin mouse model of AD. The present study assessed the efficacy of TBR for treating behavioral and neuropathological deficits in the 5xFAD model of AD. Both 6- and 12-month-old 5xFAD mice and age-matched wild-type controls received TBR (60 mg/kg) or the equivalent dose of vehicle (0.5% methylcellulose) via oral administration, every other day for two months. All mice were tested in the open field (OF), novel object recognition (NOR), and the Morris water maze (MWM) tasks. In addition, neuronal morphology, neurodegeneration, Aβ plaque load, and glial activation were assessed. TBR treatment reduced memory deficits in the MWM and NOR tests and lessened anxiety levels in the OF task, mostly in the 6-month-old male mice. TBR also protected against neuron loss, reduced activation of astrocytes and microglia, primarily in 6-month-old mice, and attenuated Aβ deposition. These results suggest that the combination of tart cherry extract and omega fatty acids in TBR can reduce AD-like deficits in 5xFAD mice.


Identification and characterization of transcribed enhancers during cerebellar development through enhancer RNA analysis.

  • Miguel Ramirez‎ et al.
  • BMC genomics‎
  • 2023‎

The development of the brain requires precise coordination of molecular processes across many cell-types. Underpinning these events are gene expression programs which require intricate regulation by non-coding regulatory sequences known as enhancers. In the context of the developing brain, transcribed enhancers (TEs) regulate temporally-specific expression of genes critical for cell identity and differentiation. Transcription of non-coding RNAs at active enhancer sequences, known as enhancer RNAs (eRNAs), is tightly associated with enhancer activity and has been correlated with target gene expression. TEs have been characterized in a multitude of developing tissues, however their regulatory role has yet to be described in the context of embryonic and early postnatal brain development. In this study, eRNA transcription was analyzed to identify TEs active during cerebellar development, as a proxy for the developing brain. Cap Analysis of Gene Expression followed by sequencing (CAGE-seq) was conducted at 12 stages throughout embryonic and early postnatal cerebellar development.


Identification of novel cerebellar developmental transcriptional regulators with motif activity analysis.

  • Thomas J Ha‎ et al.
  • BMC genomics‎
  • 2019‎

The work of the FANTOM5 Consortium has brought forth a new level of understanding of the regulation of gene transcription and the cellular processes involved in creating diversity of cell types. In this study, we extended the analysis of the FANTOM5 Cap Analysis of Gene Expression (CAGE) transcriptome data to focus on understanding the genetic regulators involved in mouse cerebellar development.


Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases.

  • Robert D Wyse‎ et al.
  • International journal of molecular sciences‎
  • 2014‎

The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.


A Novel and Multivalent Role of Pax6 in Cerebellar Development.

  • Joanna Yeung‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2016‎

Pax6 is a prominent gene in brain development. The deletion of Pax6 results in devastated development of eye, olfactory bulb, and cortex. However, it has been reported that the Pax6-null Sey cerebellum only has minor defects involving granule cells despite Pax6 being expressed throughout cerebellar development. The present work has uncovered a requirement of Pax6 in the development of all rhombic lip (RL) lineages. A significant downregulation of Tbr1 and Tbr2 expression is found in the Sey cerebellum, these are cell-specific markers of cerebellar nuclear (CN) neurons and unipolar brush cells (UBCs), respectively. The examination of Tbr1 and Lmx1a immunolabeling and Nissl staining confirmed the loss of CN neurons from the Sey cerebellum. CN neuron progenitors are produced in the mutant but there is an enhanced death of these neurons as shown by increased presence of caspase-3-positive cells. These data indicate that Pax6 regulates the survival of CN neuron progenitors. Furthermore, the analysis of experimental mouse chimeras suggests a cell-extrinsic role of Pax6 in CN neuron survival. For UBCs, using Tbr2 immunolabeling, these cells are significantly reduced in the Sey cerebellum. The loss of UBCs in the mutant is due partly to cell death in the RL and also to the reduced production of progenitors from the RL. These results demonstrate a critical role for Pax6 in regulating the generation and survival of UBCs. This and previous work from our laboratory demonstrate a seminal role of Pax6 in the development of all cerebellar glutamatergic neurons.


PAMAM Dendrimers Cross the Blood-Brain Barrier When Administered through the Carotid Artery in C57BL/6J Mice.

  • Bhairavi Srinageshwar‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Drug delivery into the central nervous system (CNS) is challenging due to the blood-brain barrier (BBB) and drug delivery into the brain overcoming the BBB can be achieved using nanoparticles such as dendrimers. The conventional cationic dendrimers used are highly toxic. Therefore, the present study investigates the role of novel mixed surface dendrimers, which have potentially less toxicity and can cross the BBB when administered through the carotid artery in mice. In vitro experiments investigated the uptake of amine dendrimers (G1-NH₂ and G4-NH₂) and novel dendrimers (G1-90/10 and G4-90/10) by primary cortical cultures. In vivo experiments involved transplantation of G4-90/10 into mice through (1) invasive intracranial injections into the striatum; and (2) less invasive carotid injections. The animals were sacrificed 24-h and 1-week post-transplantations and their brains were analyzed. In vivo experiments proved that the G4-90/10 can cross the BBB when injected through the carotid artery and localize within neurons and glial cells. The dendrimers were found to migrate through the corpus callosum 1-week post intracranial injection. Immunohistochemistry showed that the migrating cells are the dendrimer-infected glial cells. Overall, our results suggest that poly-amidoamine (PAMAM) dendrimers may be used as a minimally invasive means to deliver biomolecules for treating neurological diseases or disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: