Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Maternal bile acid transporter deficiency promotes neonatal demise.

  • Yuanyuan Zhang‎ et al.
  • Nature communications‎
  • 2015‎

Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition.


Genome-wide microarray comparison reveals downstream genes of Pax6 in the developing mouse cerebellum.

  • Thomas J Ha‎ et al.
  • The European journal of neuroscience‎
  • 2012‎

The Pax6 transcription factor is expressed in cerebellar granule cells and when mutated, as in the Sey/Sey mouse, produces granule cells with disturbed survival and migration and with defects in neurite extension. The impact of Pax6 on other genes in the context of cerebellar development has not been identified. In this study, we performed transcriptome comparisons between wildtype and Pax6-null whole cerebellar tissue at embryonic day (E) 13.5, 15.5 and 18.5 using Affymetrix arrays (U74Av2). Statistical analyses identified 136 differentially regulated transcripts (FDR 0.05, 1.2-fold change cutoff) over time in Pax6-null cerebellar tissue. In parallel we examined the Math1-null granuloprival cerebellum and identified 228 down-regulated transcripts (FDR 0.05, 1.2-fold change cutoff). The intersection of these two microarray datasets produced a total of 21 differentially regulated transcripts. For a subset of the identified transcripts, we used qRT-PCR to validate the microarray data and demonstrated the expression in the rhombic lip lineage and differential expression in Pax6-null cerebellum with in situ hybridisation analysis. The candidate genes identified in this way represent direct or indirect Pax6-downstream genes involved in cerebellar development.


Radial glia cells are candidate stem cells of ependymoma.

  • Michael D Taylor‎ et al.
  • Cancer cell‎
  • 2005‎

Tumors of the same histologic type often comprise clinically and molecularly distinct subgroups; however, the etiology of these subgroups is unknown. Here, we report that histologically identical, but genetically distinct, ependymomas exhibit patterns of gene expression that recapitulate those of radial glia cells in the corresponding region of the central nervous system. Cancer stem cells isolated from ependymomas displayed a radial glia phenotype and formed tumors when orthotopically transplanted in mice. These findings identify restricted populations of radial glia cells as candidate stem cells of the different subgroups of ependymoma, and they support a general hypothesis that subgroups of the same histologic tumor type are generated by different populations of progenitor cells in the tissues of origin.


BMI-1 is a potential therapeutic target in diffuse intrinsic pontine glioma.

  • Shiva Senthil Kumar‎ et al.
  • Oncotarget‎
  • 2017‎

Diffuse intrinsic pontine glioma (DIPG) is a poor-prognosis pediatric brain tumor. No effective curative therapy is currently available and no therapeutic advances have been made in several decades. BMI-1 is a member of the multimeric protein complex Polycomb repressor complex 1. It is highly expressed in a number of diseases and malignancies and has been implicated in self-renewal of normal and cancer cells, and in DNA damage signaling. The role of BMI-1 in DIPG is largely unknown. Here, we show that BMI-1 is highly expressed in tumor tissue samples of DIPG patients and in patient-derived cancer stem-like cells. BMI-1 downregulation leads to the inhibition of DIPG patient-derived neurosphere cell proliferation, cell cycle signaling, self-renewal, telomerase expression and activity, and suppresses DIPG cell migration. Moreover, targeted inhibition of BMI-1 sensitizes DIPG cells to radiomimetic drug-induced DNA damage. Together, our data validate BMI-1 as a potential therapeutic target to treat children with DIPG.


DDX3X Suppresses the Susceptibility of Hindbrain Lineages to Medulloblastoma.

  • Deanna M Patmore‎ et al.
  • Developmental cell‎
  • 2020‎

DEAD-Box Helicase 3 X-Linked (DDX3X) is frequently mutated in the Wingless (WNT) and Sonic hedghog (SHH) subtypes of medulloblastoma-the commonest malignant childhood brain tumor, but whether DDX3X functions as a medulloblastoma oncogene or tumor suppressor gene is not known. Here, we show that Ddx3x regulates hindbrain patterning and development by controlling Hox gene expression and cell stress signaling. In mice predisposed to Wnt- or Shh medulloblastoma, Ddx3x sensed oncogenic stress and suppressed tumor formation. WNT and SHH medulloblastomas normally arise only in the lower and upper rhombic lips, respectively. Deletion of Ddx3x removed this lineage restriction, enabling both medulloblastoma subtypes to arise in either germinal zone. Thus, DDX3X is a medulloblastoma tumor suppressor that regulates hindbrain development and restricts the competence of cell lineages to form medulloblastoma subtypes.


Wls provides a new compartmental view of the rhombic lip in mouse cerebellar development.

  • Joanna Yeung‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Math1 is the defining molecule of the cerebellar rhombic lip and Pax6 is downstream in the Math1 pathway. In the present study, we discover that Wntless (Wls) is a novel molecular marker of the cells in the interior face of the rhombic lip throughout normal mouse cerebellar development. Wls expression is found complementary to the expression of Math1 and Pax6, which are localized to the exterior face of the rhombic lip. To determine the interaction between these molecules, we examine the loss-of-Math1 or loss-of-Pax6 in the cerebellum, i.e., the Math1-null and Pax6-null (Sey) mutant cerebella. The presence of Wls-positive cells in the Math1-null rhombic lip indicates that Wls expression is independent of Math1. In the Sey mutant cerebellum, there is an expansion of Wls-expressing cells into regions that are normally colonized by Pax6-expressing cells. The ectopic expression of Wls in the Pax6-null cerebellum suggests a negative interaction between Wls-expressing cells and Pax6-positive cells. These findings suggest that the rhombic lip is dynamically patterned by the expression of Wls, Math1, and Pax6. We also examine five rhombic lip cell markers (Wls, Math1, Pax6, Lmx1a, and Tbr2) to identify four molecularly distinct compartments in the rhombic lip during cerebellar development. The existence of spatial compartmentation in the rhombic lip and the interplay between Wls, Math1, and Pax6 in the rhombic lip provides novel views of early cerebellar development.


Cross-Species Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes.

  • Yiai Tong‎ et al.
  • Cancer cell‎
  • 2015‎

Choroid plexus carcinomas (CPCs) are poorly understood and frequently lethal brain tumors with few treatment options. Using a mouse model of the disease and a large cohort of human CPCs, we performed a cross-species, genome-wide search for oncogenes within syntenic regions of chromosome gain. TAF12, NFYC, and RAD54L co-located on human chromosome 1p32-35.3 and mouse chromosome 4qD1-D3 were identified as oncogenes that are gained in tumors in both species and required for disease initiation and progression. TAF12 and NFYC are transcription factors that regulate the epigenome, whereas RAD54L plays a central role in DNA repair. Our data identify a group of concurrently gained oncogenes that cooperate in the formation of CPC and reveal potential avenues for therapy.


Wls expression in the rhombic lip orchestrates the embryonic development of the mouse cerebellum.

  • Joanna Yeung‎ et al.
  • Neuroscience‎
  • 2017‎

Wntless (Wls) is implicated in the Wnt signaling pathway by regulating the secretion of Wnt molecules. During brain development, Wls is expressed in the isthmic organizer (ISO) and rhombic lip (RL). Wls regulates Wnt1 secretion at the ISO which is required to induce midbrain-hindbrain structures. However, Wls function in the RL is not known. Here, we employed Nestin-cre to delete Wls specifically in the RL during mid-gestation. The loss-of-Wls leads to an abnormal RL during development and cerebellar vermis hypoplasia at birth. The Wls conditional knockout (cKO) has rudimentary foliation with an absence of Bergmann glia fibers in the external germinal layer (EGL). The Wls-cKO cerebellum also exhibits ectopia of several cell types and aberrations in granule cell organization. Finally, there is a loss of 85% of unipolar brush cells. From these findings, Wls-expressing cells in the rhombic lip are implicated in the orchestration of cerebellar development.


Preclinical models for neuroblastoma: establishing a baseline for treatment.

  • Tal Teitz‎ et al.
  • PloS one‎
  • 2011‎

Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system.


Identification of novel cerebellar developmental transcriptional regulators with motif activity analysis.

  • Thomas J Ha‎ et al.
  • BMC genomics‎
  • 2019‎

The work of the FANTOM5 Consortium has brought forth a new level of understanding of the regulation of gene transcription and the cellular processes involved in creating diversity of cell types. In this study, we extended the analysis of the FANTOM5 Cap Analysis of Gene Expression (CAGE) transcriptome data to focus on understanding the genetic regulators involved in mouse cerebellar development.


Identification and characterization of transcribed enhancers during cerebellar development through enhancer RNA analysis.

  • Miguel Ramirez‎ et al.
  • BMC genomics‎
  • 2023‎

The development of the brain requires precise coordination of molecular processes across many cell-types. Underpinning these events are gene expression programs which require intricate regulation by non-coding regulatory sequences known as enhancers. In the context of the developing brain, transcribed enhancers (TEs) regulate temporally-specific expression of genes critical for cell identity and differentiation. Transcription of non-coding RNAs at active enhancer sequences, known as enhancer RNAs (eRNAs), is tightly associated with enhancer activity and has been correlated with target gene expression. TEs have been characterized in a multitude of developing tissues, however their regulatory role has yet to be described in the context of embryonic and early postnatal brain development. In this study, eRNA transcription was analyzed to identify TEs active during cerebellar development, as a proxy for the developing brain. Cap Analysis of Gene Expression followed by sequencing (CAGE-seq) was conducted at 12 stages throughout embryonic and early postnatal cerebellar development.


Phenotypic and genetic analysis of the cerebellar mutant tmgc26, a new ENU-induced ROR-alpha allele.

  • Douglas J Swanson‎ et al.
  • The European journal of neuroscience‎
  • 2010‎

ROR-alpha is an orphan nuclear receptor, inactivation of which cell-autonomously blocks differentiation of cerebellar Purkinje cells with a secondary loss of granule neurons. As part of our ENU mutagenesis screen we isolated the recessive tmgc26 mouse mutant, characterized by early-onset progressive ataxia, cerebellar degeneration and juvenile lethality. Detailed analysis of the tmgc26-/- cerebella revealed Purkinje cell and granule cell abnormalities, and defects in molecular layer interneurons and radial glia. Chimera studies suggested a cell-autonomous effect of the tmgc26 mutation in Purkinje cells and molecular layer interneurons, and a non-cell-autonomous effect in granule cells. The mutation was mapped to a 13-Mb interval on chromosome 9, a region that contains the ROR-alpha gene. Sequencing of genomic DNA revealed a T-to-A transition in exon 5 of the ROR-alpha gene, resulting in a nonsense mutation C257X and severe truncation of the ROR-alpha protein. Together, our data identify new roles for ROR-alpha in molecular layer interneurons and radial glia development and suggest tmgc26 as a novel ROR-alpha allele that may be used to further delineate the molecular mechanisms of ROR-alpha action.


Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation.

  • Liqin Zhu‎ et al.
  • Nature‎
  • 2009‎

Cancer stem cells are remarkably similar to normal stem cells: both self-renew, are multipotent and express common surface markers, for example, prominin 1 (PROM1, also called CD133). What remains unclear is whether cancer stem cells are the direct progeny of mutated stem cells or more mature cells that reacquire stem cell properties during tumour formation. Answering this question will require knowledge of whether normal stem cells are susceptible to cancer-causing mutations; however, this has proved difficult to test because the identity of most adult tissue stem cells is not known. Here, using an inducible Cre, nuclear LacZ reporter allele knocked into the Prom1 locus (Prom1(C-L)), we show that Prom1 is expressed in a variety of developing and adult tissues. Lineage-tracing studies of adult Prom1(+/C-L) mice containing the Rosa26-YFP reporter allele showed that Prom1(+) cells are located at the base of crypts in the small intestine, co-express Lgr5 (ref. 2), generate the entire intestinal epithelium, and are therefore the small intestinal stem cell. Prom1 was reported recently to mark cancer stem cells of human intestinal tumours that arise frequently as a consequence of aberrant wingless (Wnt) signalling. Activation of endogenous Wnt signalling in Prom1(+/C-L) mice containing a Cre-dependent mutant allele of beta-catenin (Ctnnb1(lox(ex3))) resulted in a gross disruption of crypt architecture and a disproportionate expansion of Prom1(+) cells at the crypt base. Lineage tracing demonstrated that the progeny of these cells replaced the mucosa of the entire small intestine with neoplastic tissue that was characterized by focal high-grade intraepithelial neoplasia and crypt adenoma formation. Although all neoplastic cells arose from Prom1(+) cells in these mice, only 7% of tumour cells retained Prom1 expression. Our data indicate that Prom1 marks stem cells in the adult small intestine that are susceptible to transformation into tumours retaining a fraction of mutant Prom1(+) tumour cells.


The Transcription Factor Pou3f1 Sheds Light on the Development and Molecular Diversity of Glutamatergic Cerebellar Nuclear Neurons in the Mouse.

  • Joshua Po Han Wu‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2022‎

The cerebellar nuclear (CN) neurons are a molecularly heterogeneous population whose specification into the different cerebellar nuclei is defined by the expression of varying sets of transcription factors. Here, we present a novel molecular marker, Pou3f1, that delineates specific sets of glutamatergic CN neurons. The glutamatergic identity of Pou3f1+ cells was confirmed by: (1) the co-expression of vGluT2, a cell marker of glutamatergic neurons; (2) the lack of co-expression between Pou3f1 and GAD67, a marker of GABAergic neurons; (3) the co-expression of Atoh1, the master regulator required for the production of all cerebellar glutamatergic lineages; and (4) the absence of Pou3f1-expressing cells in the Atoh1-null cerebellum. Furthermore, the lack of Pax6 and Tbr1 expression in Pou3f1+ cells reveals that Pou3f1-expressing CN neurons specifically settle in the interposed and dentate nuclei. In addition, the Pou3f1-labeled glutamatergic CN neurons can be further classified by the expression of Brn2 and Irx3. The results of the present study align with previous findings highlighting that the survival of the interposed and dentate CN neurons is largely independent of Pax6. More importantly, the present study extends the field's collective knowledge of the molecular diversity of cerebellar nuclei.


A Novel and Multivalent Role of Pax6 in Cerebellar Development.

  • Joanna Yeung‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2016‎

Pax6 is a prominent gene in brain development. The deletion of Pax6 results in devastated development of eye, olfactory bulb, and cortex. However, it has been reported that the Pax6-null Sey cerebellum only has minor defects involving granule cells despite Pax6 being expressed throughout cerebellar development. The present work has uncovered a requirement of Pax6 in the development of all rhombic lip (RL) lineages. A significant downregulation of Tbr1 and Tbr2 expression is found in the Sey cerebellum, these are cell-specific markers of cerebellar nuclear (CN) neurons and unipolar brush cells (UBCs), respectively. The examination of Tbr1 and Lmx1a immunolabeling and Nissl staining confirmed the loss of CN neurons from the Sey cerebellum. CN neuron progenitors are produced in the mutant but there is an enhanced death of these neurons as shown by increased presence of caspase-3-positive cells. These data indicate that Pax6 regulates the survival of CN neuron progenitors. Furthermore, the analysis of experimental mouse chimeras suggests a cell-extrinsic role of Pax6 in CN neuron survival. For UBCs, using Tbr2 immunolabeling, these cells are significantly reduced in the Sey cerebellum. The loss of UBCs in the mutant is due partly to cell death in the RL and also to the reduced production of progenitors from the RL. These results demonstrate a critical role for Pax6 in regulating the generation and survival of UBCs. This and previous work from our laboratory demonstrate a seminal role of Pax6 in the development of all cerebellar glutamatergic neurons.


Medulloblastoma therapy generates risk of a poorly-prognostic H3 wild-type subgroup of diffuse intrinsic pontine glioma: a report from the International DIPG Registry.

  • Hunter C Gits‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

With improved survivorship in medulloblastoma, there has been an increasing incidence of late complications. To date, no studies have specifically addressed the risk of radiation-associated diffuse intrinsic pontine glioma (DIPG) in medulloblastoma survivors. Query of the International DIPG Registry identified six cases of DIPG with a history of medulloblastoma treated with radiotherapy. All patients underwent central radiologic review that confirmed a diagnosis of DIPG. Six additional cases were identified in reports from recent cooperative group medulloblastoma trials (total n = 12; ages 7 to 21 years). From these cases, molecular subgrouping of primary medulloblastomas with available tissue (n = 5) revealed only non-WNT, non-SHH subgroups (group 3 or 4). The estimated cumulative incidence of DIPG after post-treatment medulloblastoma ranged from 0.3-3.9%. Posterior fossa radiation exposure (including brainstem) was greater than 53.0 Gy in all cases with available details. Tumor/germline exome sequencing of three radiation-associated DIPGs revealed an H3 wild-type status and mutational signature distinct from primary DIPG with evidence of radiation-induced DNA damage. Mutations identified in the radiation-associated DIPGs had significant molecular overlap with recurrent drivers of adult glioblastoma (e.g. NRAS, EGFR, and PTEN), as opposed to epigenetic dysregulation in H3-driven primary DIPGs. Patients with radiation-associated DIPG had a significantly worse median overall survival (median 8 months; range 4-17 months) compared to patients with primary DIPG. Here, it is demonstrated that DIPG occurs as a not infrequent complication of radiation therapy in survivors of pediatric medulloblastoma and that radiation-associated DIPGs may present as a poorly-prognostic distinct molecular subgroup of H3 wild-type DIPG. Given the abysmal survival of these cases, these findings provide a compelling argument for efforts to reduce exposure of the brainstem in the treatment of medulloblastoma. Additionally, patients with radiation-associated DIPG may benefit from future therapies targeted to the molecular features of adult glioblastoma rather than primary DIPG.


A pilot radiogenomic study of DIPG reveals distinct subgroups with unique clinical trajectories and therapeutic targets.

  • Xiaoting Zhu‎ et al.
  • Acta neuropathologica communications‎
  • 2021‎

An adequate understanding of the relationships between radiographic and genomic features in diffuse intrinsic pontine glioma (DIPG) is essential, especially in the absence of universal biopsy, to further characterize the molecular heterogeneity of this disease and determine which patients are most likely to respond to biologically-driven therapies. Here, a radiogenomics analytic approach was applied to a cohort of 28 patients with DIPG. Tumor size and imaging characteristics from all available serial MRIs were evaluated by a neuro-radiologist, and patients were divided into three radiographic response groups (partial response [PR], stable disease [SD], progressive disease [PD]) based on MRI within 2 months of radiotherapy (RT) completion. Whole genome and RNA sequencing were performed on autopsy tumor specimens. We report several key, therapeutically-relevant findings: (1) Certain radiologic features on first and subsequent post-RT MRIs are associated with worse overall survival, including PD following irradiation as well as present, new, and/or increasing peripheral ring enhancement, necrosis, and diffusion restriction. (2) Upregulation of EMT-related genes and distant tumor spread at autopsy are observed in a subset of DIPG patients who exhibit poorer radiographic response to irradiation and/or higher likelihood of harboring H3F3A mutations, suggesting possible benefit of upfront craniospinal irradiation. (3) Additional genetic aberrations were identified, including DYNC1LI1 mutations in a subgroup of patients with PR on post-RT MRI; further investigation into potential roles in DIPG tumorigenesis and/or treatment sensitivity is necessary. (4) Whereas most DIPG tumors have an immunologically "cold" microenvironment, there appears to be a subset which harbor a more inflammatory genomic profile and/or higher mutational burden, with a trend toward improved overall survival and more favorable radiographic response to irradiation, in whom immunotherapy should be considered. This study has begun elucidating relationships between post-RT radiographic response with DIPG molecular profiles, revealing radiogenomically distinct subgroups with unique clinical trajectories and therapeutic targets.


Characterizing temporal genomic heterogeneity in pediatric low-grade gliomas.

  • Margot A Lazow‎ et al.
  • Acta neuropathologica communications‎
  • 2020‎

Recent discoveries have provided valuable insight into the genomic landscape of pediatric low-grade gliomas (LGGs) at diagnosis, facilitating molecularly targeted treatment. However, little is known about their temporal and therapy-related genomic heterogeneity. An adequate understanding of the evolution of pediatric LGGs' genomic profiles over time is critically important in guiding decisions about targeted therapeutics and diagnostic biopsy at recurrence. Fluorescence in situ hybridization, mutation-specific immunohistochemistry, and/or targeted sequencing were performed on paired tumor samples from primary diagnostic and subsequent surgeries. Ninety-four tumor samples from 45 patients (41 with two specimens, four with three specimens) from three institutions underwent testing. Conservation of BRAF fusion, BRAFV600E mutation, and FGFR1 rearrangement status was observed in 100%, 98%, and 96% of paired specimens, respectively. No loss or gain of IDH1 mutations or NTRK2, MYB, or MYBL1 rearrangements were detected over time. Histologic diagnosis remained the same in all tumors, with no acquired H3K27M mutations or malignant transformation. Changes in CDKN2A deletion status at recurrence occurred in 11 patients (42%), with acquisition of hemizygous CDKN2A deletion in seven and loss in four. Shorter time to progression and shorter time to subsequent surgery were observed among patients with acquired CDKN2A deletions compared to patients without acquisition of this alteration [median time to progression: 5.5 versus 16.0 months (p = 0.048); median time to next surgery: 17.0 months versus 29.0 months (p = 0.031)]. Most targetable genetic aberrations in pediatric LGGs, including BRAF alterations, are conserved at recurrence and following chemotherapy or irradiation. However, changes in CDKN2A deletion status over time were demonstrated. Acquisition of CDKN2A deletion may define a higher risk subgroup of pediatric LGGs with a poorer prognosis. Given the potential for targeted therapies for tumors harboring CDKN2A deletions, biopsy at recurrence may be indicated in certain patients, especially those with rapid progression.


Subtypes of medulloblastoma have distinct developmental origins.

  • Paul Gibson‎ et al.
  • Nature‎
  • 2010‎

Medulloblastoma encompasses a collection of clinically and molecularly diverse tumour subtypes that together comprise the most common malignant childhood brain tumour. These tumours are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) after aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH subtype). The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT subtype) arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumours infiltrate the dorsal brainstem, whereas SHH-subtype tumours are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem which included aberrantly proliferating Zic1(+) precursor cells. These lesions persisted in all mutant adult mice; moreover, in 15% of cases in which Tp53 was concurrently deleted, they progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence, to our knowledge, that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH- and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.


Nogo Receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches.

  • Ruby Hsu‎ et al.
  • PloS one‎
  • 2007‎

NOGO Receptor 1 (RTN4R) regulates axonal growth, as well as axon regeneration after injury. The gene maps to the 22q11.2 schizophrenia susceptibility locus and is thus a strong functional and positional candidate gene.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: