Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Intronic PRRT2 mutation generates novel splice acceptor site and causes paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC) in a three generation family.

  • Axel Weber‎ et al.
  • BMC medical genetics‎
  • 2016‎

Mutations in PRRT2 cause autosomal dominant paroxysmal kinesigenic dyskinesia with infantile convulsions (PKD/IC).


The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-κB.

  • Elisabeth Ziesché‎ et al.
  • Nucleic acids research‎
  • 2013‎

Histone deacetylase (HDAC) 3, as a cofactor in co-repressor complexes containing silencing mediator for retinoid or thyroid-hormone receptors (SMRT) and nuclear receptor co-repressor (N-CoR), has been shown to repress gene transcription in a variety of contexts. Here, we reveal a novel role for HDAC3 as a positive regulator of IL-1-induced gene expression. Various experimental approaches involving RNAi-mediated knockdown, conditional gene deletion or small molecule inhibitors indicate a positive role of HDAC3 for transcription of the majority of IL-1-induced human or murine genes. This effect was independent from the gene regulatory effects mediated by the broad-spectrum HDAC inhibitor trichostatin A (TSA) and thus suggests IL-1-specific functions for HDAC3. The stimulatory function of HDAC3 for inflammatory gene expression involves a mechanism that uses binding to NF-κB p65 and its deacetylation at various lysines. NF-κB p65-deficient cells stably reconstituted to express acetylation mimicking forms of p65 (p65 K/Q) had largely lost their potential to stimulate IL-1-triggered gene expression, implying that the co-activating property of HDAC3 involves the removal of inhibitory NF-κB p65 acetylations at K122, 123, 314 and 315. These data describe a novel function for HDAC3 as a co-activator in inflammatory signaling pathways and help to explain the anti-inflammatory effects frequently observed for HDAC inhibitors in (pre)clinical use.


Multi-level inhibition of coronavirus replication by chemical ER stress.

  • Mohammed Samer Shaban‎ et al.
  • Nature communications‎
  • 2021‎

Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. The ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types including primary differentiated human bronchial epithelial cells, (partially) reverses the virus-induced translational shut-down, improves viability of infected cells and counteracts the CoV-mediated downregulation of IRE1α and the ER chaperone BiP. Proteome-wide analyses revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including essential (HERPUD1) or novel (UBA6 and ZNF622) factors of ER quality control, and ER-associated protein degradation complexes. Additionally, thapsigargin blocks the CoV-induced selective autophagic flux involving p62/SQSTM1. The data show that thapsigargin hits several central mechanisms required for CoV replication, suggesting that this compound (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs.


Mutations in HID1 Cause Syndromic Infantile Encephalopathy and Hypopituitarism.

  • Anne Schänzer‎ et al.
  • Annals of neurology‎
  • 2021‎

Precursors of peptide hormones undergo posttranslational modifications within the trans-Golgi network (TGN). Dysfunction of proteins involved at different steps of this process cause several complex syndromes affecting the central nervous system (CNS). We aimed to clarify the genetic cause in a group of patients characterized by hypopituitarism in combination with brain atrophy, thin corpus callosum, severe developmental delay, visual impairment, and epilepsy.


A membrane penetrating peptide aptamer inhibits STAT3 function and suppresses the growth of STAT3 addicted tumor cells.

  • Corina Borghouts‎ et al.
  • JAK-STAT‎
  • 2012‎

Cancer cells are characterized by the aberrant activation of signaling pathways governing proliferation, survival, angiogenesis, migration and immune evasion. These processes are partially regulated by the transcription factor STAT3. This factor is inappropriately activated in diverse tumor types. Since tumor cells can become dependent on its persistent activation, STAT3 is a favorable drug target. Here, we describe the functional characterization of the recombinant STAT3 inhibitor, rS3-PA. This inhibitor is based on a 20 amino acid peptide which specifically interacts with the dimerization domain of STAT3. It is integrated into a thioredoxin scaffold and fused to a protein transduction domain. Protein gel blot and immunofluorescence analyses showed that rS3-PA is efficiently taken up by cells via an endocytosis independent mechanism. Intracellularly, it reduces the phosphorylation of STAT3 and enhances its degradation. This leads to the downregulation of STAT3 target gene expression on the mRNA and protein levels. Subsequently, tumor cell proliferation, survival and migration and the induction of angiogenesis are inhibited. In contrast, normal cells remain unaffected. Systemic administration of rS3-PA at doses of 7.5 mg/kg reduced P-STAT3 levels and significantly inhibited tumor growth up to 35% in a glioblastoma xenograft mouse model.


Cyclin-dependent kinase 6 is a chromatin-bound cofactor for NF-κB-dependent gene expression.

  • Katja Handschick‎ et al.
  • Molecular cell‎
  • 2014‎

Given the intimate link between inflammation and dysregulated cell proliferation in cancer, we investigated cytokine-triggered gene expression in different cell cycle stages. Transcriptome analysis revealed that G1 release through cyclin-dependent kinase 6 (CDK6) and CDK4 primes and cooperates with the cytokine-driven gene response. CDK6 physically and functionally interacts with the NF-κB subunit p65 in the nucleus and is found at promoters of many transcriptionally active NF-κB target genes. CDK6 recruitment to distinct chromatin regions of inflammatory genes was essential for proper loading of p65 to its cognate binding sites and for the function of p65 coactivators, such as TRIP6. Furthermore, cytokine-inducible nuclear translocation and chromatin association of CDK6 depends on the kinase activity of TAK1 and p38. These results have widespread biological implications, as aberrant CDK6 expression or activation that is frequently observed in human tumors modulates NF-κB to shape the cytokine and chemokine repertoires in chronic inflammation and cancer.


Metabolic labeling and LC-MS/MS-based identification of interleukin-1α-induced secreted proteomes from epithelial cells in the presence or absence of serum.

  • Jasmin Priester‎ et al.
  • STAR protocols‎
  • 2023‎

The unbiased identification of cytokine-induced, secreted proteins from cells cultured in serum-containing medium is challenging. Here, we describe an experimental and bioinformatics workflow to label interleukin-1α-regulated proteins in living cells with the methionine analogue L-homopropargylglycine. We detail their purification and identification by means of CLICK-chemistry-based biotinylation followed by nanoHPLC-MS/MS. A side-by-side comparison of enriched proteins and their ontologies to serum-free conditions demonstrates the sensitivity and specificity of this approach to study the inducible secreted proteomes of epithelial cells.


Expression of the miR-302/367 cluster in glioblastoma cells suppresses tumorigenic gene expression patterns and abolishes transformation related phenotypes.

  • Chul Min Yang‎ et al.
  • International journal of cancer‎
  • 2015‎

Cellular transformation is initiated by the activation of oncogenes and a closely associated developmental reprogramming of the epigenetic landscape. Transcription factors, regulators of chromatin states and microRNAs influence cell fates in development and stabilize the phenotypes of normal, differentiated cells and of cancer cells. The miR-302/367 cluster, predominantly expressed in human embryonic stem cells (hESs), can promote the cellular reprogramming of human and mouse cells and contribute to the generation of iPSC. We have used the epigenetic reprogramming potential of the miR-302/367 cluster to "de-program" tumor cells, that is, hift their gene expression pattern towards an alternative program associated with more benign cellular phenotypes. Induction of the miR-302/367 cluster in extensively mutated U87MG glioblastoma cells drastically suppressed the expression of transformation related proteins, for example, the reprogramming factors OCT3/4, SOX2, KLF4 and c-MYC, and the transcription factors POU3F2, SALL2 and OLIG2, required for the maintenance of glioblastoma stem-like tumor propagating cells. It also diminished PI3K/AKT and STAT3 signaling, impeded colony formation in soft agar and cell migration and suppressed pro-inflammatory cytokine secretion. At the same time, the miR-302/367 cluster restored the expression of neuronal markers of differentiation. Most notably, miR-302/367 cluster expressing cells lose their ability to form tumors and to establish liver metastasis in nude mice. The induction of the miR-302/367 cluster in U87MG glioblastoma cells suppresses the expression of multiple transformation related genes, abolishes the tumor and metastasis formation potential of these cells and can potentially become a new approach for cancer therapy.


RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes.

  • Johanna Meier-Soelch‎ et al.
  • Frontiers in immunology‎
  • 2018‎

The potent proinflammatory cytokine interleukin (IL)-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (sh)RNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative) requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a) have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.


Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation.

  • Axel Weber‎ et al.
  • The EMBO journal‎
  • 2008‎

In response to stimuli that activate p53, cells can undergo either apoptosis or cell cycle arrest, depending on the precise pattern of p53 target genes that is activated. We show here that Zbtb4, a transcriptional repressor protein, associates with the Sin3/histone deacetylase co-repressor and represses expression of P21CIP1 as part of a heterodimeric complex with Miz1. In vivo, expression of ZBTB4 is downregulated in advanced stages of multiple human tumours. In cell culture, depletion of ZBTB4 promotes cell cycle arrest in response to activation of p53 and suppresses apoptosis through regulation of P21CIP1, thereby promoting long-term cell survival. Our data suggest that Zbtb4 is a critical determinant of the cellular response to p53 activation and reinforce the notion that p21Cip1 can provide an essential survival signal in cells with activated p53.


Phosphorylation of Influenza A Virus Matrix Protein 1 at Threonine 108 Controls Its Multimerization State and Functional Association with the STRIPAK Complex.

  • Lu Liu‎ et al.
  • mBio‎
  • 2023‎

The influenza A virus (IAV)-encoded matrix protein 1 (M1) acts as a master regulator of virus replication and fulfills multiple structural and regulatory functions in different cell compartments. Therefore, the spatiotemporal regulation of M1 is achieved by different mechanisms, including its structural and pH-dependent flexibility, differential association with cellular factors, and posttranslational modifications. Here, we investigated the function of M1 phosphorylation at the evolutionarily conserved threonine 108 (T108) and found that its mutation to a nonphosphorylatable alanine prohibited virus replication. Absent T108, phosphorylation led to strongly increased self-association of M1 at the cell membrane and consequently prohibited its ability to enter the nucleus and to contribute to viral ribonucleoprotein nuclear export. M1 T108 phosphorylation also controls the binding affinity to the cellular STRIPAK (striatin-interacting phosphatases and kinases) complex, which contains different kinases and the phosphatase PP2A to shape phosphorylation-dependent signaling networks. IAV infection led to the redistribution of the STRIPAK scaffolding subunits STRN and STRN3 from the cell membrane to cytosolic and perinuclear clusters, where it colocalized with M1. Inactivation of the STRIPAK complex resulted in compromised M1 polymerization and IAV replication. IMPORTANCE Influenza viruses pose a major threat to human health and cause annual epidemics and occasional pandemics. Many virus-encoded proteins exert various functions in different subcellular compartments, as exemplified by the M1 protein, but the molecular mechanisms endowing the multiplicity of functions remain incompletely understood. Here, we report that phosphorylation of M1 at T108 is essential for virus replication and controls its propensity for self-association and nuclear localization. This phosphorylation also controls binding affinity of the M1 protein to the STRIPAK complex, which contributes to M1 polymerization and virus replication.


Heterozygous pathogenic variants involving CBFB cause a new skeletal disorder resembling cleidocranial dysplasia.

  • Tessi Beyltjens‎ et al.
  • Journal of medical genetics‎
  • 2023‎

Cleidocranial dysplasia (CCD) is a rare skeletal dysplasia with significant clinical variability. Patients with CCD typically present with delayed closure of fontanels and cranial sutures, dental anomalies, clavicular hypoplasia or aplasia and short stature. Runt-related transcription factor 2 (RUNX2) is currently the only known disease-causing gene for CCD, but several studies have suggested locus heterogeneity.


TRAF6 Phosphorylation Prevents Its Autophagic Degradation and Re-Shapes LPS-Triggered Signaling Networks.

  • Julia Busch‎ et al.
  • Cancers‎
  • 2021‎

The ubiquitin E3 ligase TNF Receptor Associated Factor 6 (TRAF6) participates in a large number of different biological processes including innate immunity, differentiation and cell survival, raising the need to specify and shape the signaling output. Here, we identify a lipopolysaccharide (LPS)-dependent increase in TRAF6 association with the kinase IKKε (inhibitor of NF-κB kinase subunit ε) and IKKε-mediated TRAF6 phosphorylation at five residues. The reconstitution of TRAF6-deficient cells, with TRAF6 mutants representing phosphorylation-defective or phospho-mimetic TRAF6 variants, showed that the phospho-mimetic TRAF6 variant was largely protected from basal ubiquitin/proteasome-mediated degradation, and also from autophagy-mediated decay in autolysosomes induced by metabolic perturbation. In addition, phosphorylation of TRAF6 and its E3 ligase function differentially shape basal and LPS-triggered signaling networks, as revealed by phosphoproteome analysis. Changes in LPS-triggered phosphorylation networks of cells that had experienced autophagy are partially dependent on TRAF6 and its phosphorylation status, suggesting an involvement of this E3 ligase in the interplay between metabolic and inflammatory circuits.


Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood.

  • Ana Latorre-Pellicer‎ et al.
  • Scientific reports‎
  • 2021‎

Postzygotic mosaicism (PZM) in NIPBL is a strong source of causality for Cornelia de Lange syndrome (CdLS) that can have major clinical implications. Here, we further delineate the role of somatic mosaicism in CdLS by describing a series of 11 unreported patients with mosaic disease-causing variants in NIPBL and performing a retrospective cohort study from a Spanish CdLS diagnostic center. By reviewing the literature and combining our findings with previously published data, we demonstrate a negative selection against somatic deleterious NIPBL variants in blood. Furthermore, the analysis of all reported cases indicates an unusual high prevalence of mosaicism in CdLS, occurring in 13.1% of patients with a positive molecular diagnosis. It is worth noting that most of the affected individuals with mosaicism have a clinical phenotype at least as severe as those with constitutive pathogenic variants. However, the type of genetic change does not vary between germline and somatic events and, even in the presence of mosaicism, missense substitutions are located preferentially within the HEAT repeat domain of NIPBL. In conclusion, the high prevalence of mosaicism in CdLS as well as the disparity in tissue distribution provide a novel orientation for the clinical management and genetic counselling of families.


Murine amniotic fluid stem cells contribute mesenchymal but not epithelial components to reconstituted mammary ducts.

  • Petra A B Klemmt‎ et al.
  • Stem cell research & therapy‎
  • 2010‎

Amniotic fluid harbors cells indicative of all three germ layers, and pluripotent fetal amniotic fluid stem cells (AFSs) are considered potentially valuable for applications in cellular therapy and tissue engineering. We investigated whether it is possible to direct the cell fate of AFSs in vivo by transplantation experiments into a particular microenvironment, the mammary fat pad. This microenvironment provides the prerequisites to study stem cell function and the communication between mesenchymal and epithelial cells. On clearance of the endogenous epithelium, the ductal tree can be reconstituted by the transfer of exogenously provided mammary stem cells. Analogously, exogenously provided stem cells from other tissues can be investigated for their potential to contribute to mammary gland regeneration.


Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F)+ HEL Leukemia Cells.

  • Axel Weber‎ et al.
  • Cancers‎
  • 2015‎

Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl+ K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells, Stat5 is predominantly present in the cytoplasm and the survival of the Jak2(V617F)+ HEL cells is impeded through the inhibition of the cytoplasmic functions of Stat5.


The inhibition of stat5 by a Peptide aptamer ligand specific for the DNA binding domain prevents target gene transactivation and the growth of breast and prostate tumor cells.

  • Axel Weber‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2013‎

The signal transducer and activator of transcription Stat5 is transiently activated by growth factor and cytokine signals in normal cells, but its persistent activation has been observed in a wide range of human tumors. Aberrant Stat5 activity was initially observed in leukemias, but subsequently also found in carcinomas. We investigated the importance of Stat5 in human tumor cell lines. shRNA mediated downregulation of Stat5 revealed the dependence of prostate and breast cancer cells on the expression of this transcription factor. We extended these inhibition studies and derived a peptide aptamer (PA) ligand, which directly interacts with the DNA-binding domain of Stat5 in a yeast-two-hybrid screen. The Stat5 specific PA sequence is embedded in a thioredoxin (hTRX) scaffold protein. The resulting recombinant protein S5-DBD-PA was expressed in bacteria, purified and introduced into tumor cells by protein transduction. Alternatively, S5-DBD-PA was expressed in the tumor cells after infection with a S5-DBD-PA encoding gene transfer vector. Both strategies impaired the DNA-binding ability of Stat5, suppressed Stat5 dependent transactivation and caused its intracellular degradation. Our experiments describe a peptide based inhibitor of Stat5 protein activity which can serve as a lead for the development of a clinically useful compound for cancer treatment.


Heat shock protein-90-alpha, a prolactin-STAT5 target gene identified in breast cancer cells, is involved in apoptosis regulation.

  • Christian Perotti‎ et al.
  • Breast cancer research : BCR‎
  • 2008‎

The prolactin-Janus-kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) pathway is essential for the development and functional differentiation of the mammary gland. The pathway also has important roles in mammary tumourigenesis. Prolactin regulated target genes are not yet well defined in tumour cells, and we undertook, to the best of our knowledge, the first large genetic screen of breast cancer cells treated with or without exogenous prolactin. We hypothesise that the identification of these genes should yield insights into the mechanisms by which prolactin participates in cancer formation or progression, and possibly how it regulates normal mammary gland development.


Adaptive Resistance to Immunotherapy Directed Against p53 Can be Overcome by Global Expression of Tumor-Antigens in Dendritic Cells.

  • Matjaz Humar‎ et al.
  • Frontiers in oncology‎
  • 2014‎

Immunotherapy of cancer utilizes dendritic cells (DCs) for antigen presentation and the induction of tumor-specific immune responses. However, the therapeutic induction of anti-tumor immunity is limited by tumor escape mechanisms. In this study, immortalized dendritic D2SC/1 cells were transduced with a mutated version of the p53 tumor suppressor gene, p53M234I, or p53C132F/E168G, which are overexpressed in MethA fibrosarcoma tumor cells. In addition, D2SC/1 cells were fused with MethA tumor cells to generate a vaccine that potentially expresses a large repertoire of tumor-antigens. Cellular vaccines were transplanted onto Balb/c mice and MethA tumor growth and anti-tumor immune responses were examined in vaccinated animals. D2SC/1-p53M234I and D2SC/1-p53C132F/E168G cells induced strong therapeutic and protective MethA tumor immunity upon transplantation in Balb/c mice. However, in a fraction of immunized mice MethA tumor growth resumed after an extended latency period. Analysis of these tumors indicated loss of p53 expression. Mice, pre-treated with fusion hybrids generated from D2SC/1 and MethA tumor cells, suppressed MethA tumor growth and averted adaptive immune escape. Polyclonal B-cell responses directed against various MethA tumor proteins could be detected in the sera of D2SC/1-MethA inoculated mice. Athymic nude mice and Balb/c mice depleted of CD4(+) or CD8(+) T-cells were not protected against MethA tumor cell growth after immunization with D2SC/1-MethA hybrids. Our results highlight a potential drawback of cancer immunotherapy by demonstrating that the induction of a specific anti-tumor response favors the acquisition of tumor phenotypes promoting immune evasion. In contrast, the application of DC/tumor cell fusion hybrids prevents adaptive immune escape by a T-cell dependent mechanism and provides a simple strategy for personalized anti-cancer treatment without the need of selectively priming the host immune system.


Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1.

  • Axel Weber‎ et al.
  • Nature communications‎
  • 2018‎

Genetic, epigenetic, and environmental factors contribute to the multifactorial disorder progressive supranuclear palsy (PSP). Here, we study epigenetic changes by genome-wide analysis of DNA from postmortem tissue of forebrains of patients and controls and detect significant (P < 0.05) methylation differences at 717 CpG sites in PSP vs. controls. Four-hundred fifty-one of these sites are associated with protein-coding genes. While differential methylation only affects a few sites in most genes, DLX1 is hypermethylated at multiple sites. Expression of an antisense transcript of DLX1, DLX1AS, is reduced in PSP brains. The amount of DLX1 protein is increased in gray matter of PSP forebrains. Pathway analysis suggests that DLX1 influences MAPT-encoded Tau protein. In a cell system, overexpression of DLX1 results in downregulation of MAPT while overexpression of DLX1AS causes upregulation of MAPT. Our observations suggest that altered DLX1 methylation and expression contribute to pathogenesis of PSP by influencing MAPT.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: