Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

The impact of a Dysbindin schizophrenia susceptibility variant on fiber tract integrity in healthy individuals: a TBSS-based diffusion tensor imaging study.

  • Thomas Nickl-Jockschat‎ et al.
  • NeuroImage‎
  • 2012‎

Schizophrenia is a severe neuropsychiatric disorder with high heritability, though its exact etiopathogenesis is yet unknown. An increasing number of studies point to the importance of white matter anomalies in the pathophysiology of schizophrenia. While several studies have identified the impact of schizophrenia susceptibility gene variants on gray matter anatomy in both schizophrenia patients and healthy risk variant carriers, studies dealing with the impact of these gene variants on white matter integrity are still scarce. We here present a study on the effects of a Dysbindin schizophrenia susceptibility gene variant on fiber tract integrity in healthy young subjects. 101 subjects genotyped for Dysbindin-gene variant rs1018381, though without personal or first degree relative history of psychiatric disorders underwent diffusion tensor imaging (DTI), 83 of them were included in the final analysis. We used Tract-Based Spatial Statistics (TBSS) analysis to delineate the major fiber tracts. Carriers of the minor allele T of the rs1018381 in the Dysbindin gene showed two clusters of reduced fractional anisotropy (FA) values in the perihippocampal region of the right temporal lobe compared to homozygote carriers of the major allele C. Clusters of increased FA values in T-allele carriers were found in the left prefrontal white matter, the right fornix, the right midbrain area, the left callosal body, the left cerebellum and in proximity of the right superior medial gyrus. Dysbindin has been implicated in neurite outgrowth and morphology. Impairments in anatomic connectivity as found associated with the minor Dysbindin allele in our study may result in increased risk for schizophrenia due to altered fiber tracts.


Advanced paternal age as a risk factor for neurodevelopmental disorders: a translational study.

  • Axel Krug‎ et al.
  • Molecular autism‎
  • 2020‎

Advanced paternal age (APA) is a risk factor for several neurodevelopmental disorders, including autism and schizophrenia. The potential mechanisms conferring this risk are poorly understood. Here, we show that the personality traits schizotypy and neuroticism correlated with paternal age in healthy subjects (N = 677). Paternal age was further positively associated with gray matter volume (VBM, N = 342) in the right prefrontal and the right medial temporal cortex. The integrity of fiber tracts (DTI, N = 222) connecting these two areas correlated positively with paternal age. Genome-wide methylation analysis in humans showed differential methylation in APA individuals, linking APA to epigenetic mechanisms. A corresponding phenotype was obtained in our rat model. APA rats displayed social-communication deficits and emitted fewer pro-social ultrasonic vocalizations compared to controls. They further showed repetitive and stereotyped patterns of behavior, together with higher anxiety during early development. At the neurobiological level, microRNAs miR-132 and miR-134 were both differentially regulated in rats and humans depending on APA. This study demonstrates associations between APA and social behaviors across species. They might be driven by changes in the expression of microRNAs and/or epigenetic changes regulating neuronal plasticity, leading to brain morphological changes and fronto-hippocampal connectivity, a network which has been implicated in social interaction.


Association of polysialic acid serum levels with schizophrenia spectrum and bipolar disorder-related structural brain changes and hospitalization.

  • Louisa Müller-Miny‎ et al.
  • Scientific reports‎
  • 2023‎

Expression of polysialic acid (polySia) in the adult brain is enriched in areas of continuous neurogenesis and plasticity such as the hippocampus. Genome-wide association studies identified variants of glycosylation enzyme-encoding genes, required for the generation of polySia, to be associated with the development of schizophrenia and bipolar disorder. Here, we report that serum levels of polySia are increased in patients with schizophrenia spectrum disorder compared to patients with major depressive disorders or demographically matched healthy controls. Furthermore, elevated polySia serum levels are associated with structural hippocampal gray matter decline in schizophrenia spectrum and bipolar disorder. In patients with schizophrenia spectrum disorder, polySia serum levels correlate with the number, duration of disease-related hospitalizations, early retirement and medical leave as estimators of detrimental long-term disease trajectories. Our data show that polySia serum levels are linked to structural hippocampal brain changes in schizophrenia spectrum and bipolar disorders, and suggest a contribution of polySia to the pathophysiology of these diseases.


Systematic misestimation of machine learning performance in neuroimaging studies of depression.

  • Claas Flint‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2021‎

We currently observe a disconcerting phenomenon in machine learning studies in psychiatry: While we would expect larger samples to yield better results due to the availability of more data, larger machine learning studies consistently show much weaker performance than the numerous small-scale studies. Here, we systematically investigated this effect focusing on one of the most heavily studied questions in the field, namely the classification of patients suffering from Major Depressive Disorder (MDD) and healthy controls based on neuroimaging data. Drawing upon structural MRI data from a balanced sample of N = 1868 MDD patients and healthy controls from our recent international Predictive Analytics Competition (PAC), we first trained and tested a classification model on the full dataset which yielded an accuracy of 61%. Next, we mimicked the process by which researchers would draw samples of various sizes (N = 4 to N = 150) from the population and showed a strong risk of misestimation. Specifically, for small sample sizes (N = 20), we observe accuracies of up to 95%. For medium sample sizes (N = 100) accuracies up to 75% were found. Importantly, further investigation showed that sufficiently large test sets effectively protect against performance misestimation whereas larger datasets per se do not. While these results question the validity of a substantial part of the current literature, we outline the relatively low-cost remedy of larger test sets, which is readily available in most cases.


Association of brain white matter microstructure with cognitive performance in major depressive disorder and healthy controls: a diffusion-tensor imaging study.

  • Susanne Meinert‎ et al.
  • Molecular psychiatry‎
  • 2022‎

Cognitive deficits are central attendant symptoms of major depressive disorder (MDD) with a crucial impact in patients' everyday life. Thus, it is of particular clinical importance to understand their pathophysiology. The aim of this study was to investigate a possible relationship between brain structure and cognitive performance in MDD patients in a well-characterized sample. N = 1007 participants (NMDD = 482, healthy controls (HC): NHC = 525) were selected from the FOR2107 cohort for this diffusion-tensor imaging study employing tract-based spatial statistics. We conducted a principal component analysis (PCA) to reduce neuropsychological test results, and to discover underlying factors of cognitive performance in MDD patients. We tested the association between fractional anisotropy (FA) and diagnosis (MDD vs. HC) and cognitive performance factors. The PCA yielded a single general cognitive performance factor that differed significantly between MDD patients and HC (P < 0.001). We found a significant main effect of the general cognitive performance factor in FA (Ptfce-FWE = 0.002) in a large bilateral cluster consisting of widespread frontotemporal-association fibers. In MDD patients this effect was independent of medication intake, the presence of comorbid diagnoses, the number of previous hospitalizations, and depressive symptomatology. This study provides robust evidence that white matter disturbances and cognitive performance seem to be associated. This association was independent of diagnosis, though MDD patients show more pronounced deficits and lower FA values in the global white matter fiber structure. This suggests a more general, rather than the depression-specific neurological basis for cognitive deficits.


Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study.

  • Matthias Kirschner‎ et al.
  • Molecular psychiatry‎
  • 2022‎

Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12-68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = -0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = -0.690, pspin = 0.006), BD (rho = -0.672, pspin = 0.009), and MDD (rho = -0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.


Brain Correlates of Suicide Attempt in 18,925 Participants Across 18 International Cohorts.

  • Adrian I Campos‎ et al.
  • Biological psychiatry‎
  • 2021‎

Neuroimaging studies of suicidal behavior have so far been conducted in small samples, prone to biases and false-positive associations, yielding inconsistent results. The ENIGMA-MDD Working Group aims to address the issues of poor replicability and comparability by coordinating harmonized analyses across neuroimaging studies of major depressive disorder and related phenotypes, including suicidal behavior.


Effects of polygenic risk for major mental disorders and cross-disorder on cortical complexity.

  • Simon Schmitt‎ et al.
  • Psychological medicine‎
  • 2021‎

MRI-derived cortical folding measures are an indicator of largely genetically driven early developmental processes. However, the effects of genetic risk for major mental disorders on early brain development are not well understood.


Syntactic complexity and diversity of spontaneous speech production in schizophrenia spectrum and major depressive disorders.

  • Katharina Schneider‎ et al.
  • Schizophrenia (Heidelberg, Germany)‎
  • 2023‎

Syntax, the grammatical structure of sentences, is a fundamental aspect of language. It remains debated whether reduced syntactic complexity is unique to schizophrenia spectrum disorder (SSD) or whether it is also present in major depressive disorder (MDD). Furthermore, the association of syntax (including syntactic complexity and diversity) with language-related neuropsychology and psychopathological symptoms across disorders remains unclear. Thirty-four SSD patients and thirty-eight MDD patients diagnosed according to DSM-IV-TR as well as forty healthy controls (HC) were included and tasked with describing four pictures from the Thematic Apperception Test. We analyzed the produced speech regarding its syntax delineating measures for syntactic complexity (the total number of main clauses embedding subordinate clauses) and diversity (number of different types of complex sentences). We performed cluster analysis to identify clusters based on syntax and investigated associations of syntactic, to language-related neuropsychological (verbal fluency and verbal episodic memory), and psychopathological measures (positive and negative formal thought disorder) using network analyses. Syntax in SSD was significantly reduced in comparison to MDD and HC, whereas the comparison of HC and MDD revealed no significant differences. No associations were present between speech measures and current medication, duration and severity of illness, age or sex; the single association accounted for was education. A cluster analysis resulted in four clusters with different degrees of syntax across diagnoses. Subjects with less syntax exhibited pronounced positive and negative symptoms and displayed poorer performance in executive functioning, global functioning, and verbal episodic memory. All cluster-based networks indicated varying degrees of domain-specific and cross-domain connections. Measures of syntactic complexity were closely related while syntactic diversity appeared to be a separate node outside of the syntactic network. Cross-domain associations were more salient in more complex syntactic production.


The effect of Neuregulin 1 on neural correlates of episodic memory encoding and retrieval.

  • Axel Krug‎ et al.
  • NeuroImage‎
  • 2010‎

Neuregulin 1 (NRG1) has been found to be associated with schizophrenia. Impaired performance in episodic memory tasks is an often replicated finding in this disorder. In functional neuroimaging studies, this dysfunction has been linked to signal changes in prefrontal and medial temporal areas. Therefore, it is of interest whether genes associated with the disorder, such as NRG1, modulate episodic memory performance and its neural correlates. Ninety-four healthy individuals performed an episodic memory encoding and a retrieval task while brain activation was measured with functional MRI. All subjects were genotyped for the single nucleotide polymorphism (SNP) rs35753505 in the NRG1 gene. The effect of genotype on brain activation was assessed with fMRI during the two tasks. While there were no differences in performance, brain activation in the cingulate gyrus (BA 24), the left middle frontal gyrus (BA 9), the bilateral fusiform gyrus and the left middle occipital gyrus (BA 19) was positively correlated with the number of risk alleles in NRG1 during encoding. During retrieval brain activation was positively correlated with the number of risk alleles in the left middle occipital gyrus (BA 19). NRG1 genotype does modulate brain activation during episodic memory processing in key areas for memory encoding and retrieval. The results suggest that subjects with risk alleles show hyperactivations in areas associated with elaborate encoding strategies.


Genetic variation in the schizophrenia-risk gene neuregulin1 correlates with differences in frontal brain activation in a working memory task in healthy individuals.

  • Axel Krug‎ et al.
  • NeuroImage‎
  • 2008‎

Working memory dysfunctions are a prominent feature in schizophrenia. These impairments have been linked to alterations in prefrontal brain activation with studies reporting hypo- and hyperactivations. Since schizophrenia has a high heritability, it is of interest whether susceptibility genes modulate working memory and its neural correlates. The aim of the present study was to test the influence of the NRG1 schizophrenia susceptibility gene on working memory and its neural correlates in healthy subjects. 429 healthy individuals performed a verbal and a spatial working memory task. A subsample of 85 subjects performed a 2-back version of the Continuous Performance Test (CPT) in a functional MRI study. The NRG1 SNP8NRG221533 (rs35753505) carrier status was determined and correlated with working memory performance and brain activation. There were no effects of genetic status on behavioural performance in the working memory tasks in the 429 subjects and in the fMRI task (n=85). A linear effect of NRG1 SNP8NRG221533 carrier status on neuronal activation emerged in the fMRI experiment. Hyperactivation of the superior frontal gyrus (BA 10) was correlated with the number of risk alleles. The fMRI data suggest that performance measures between groups did not differ due to a compensational activation of BA 10 in risk-allele carriers. Our results are in line with functional imaging studies in patients with schizophrenia, which also showed a differential activation in lateral prefrontal areas.


Genetic variants associated with longitudinal changes in brain structure across the lifespan.

  • Rachel M Brouwer‎ et al.
  • Nature neuroscience‎
  • 2022‎

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.


Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder: results from the ENIGMA MDD Working Group.

  • Jeanne Leerssen‎ et al.
  • Translational psychiatry‎
  • 2020‎

It has been difficult to find robust brain structural correlates of the overall severity of major depressive disorder (MDD). We hypothesized that specific symptoms may better reveal correlates and investigated this for the severity of insomnia, both a key symptom and a modifiable major risk factor of MDD. Cortical thickness, surface area and subcortical volumes were assessed from T1-weighted brain magnetic resonance imaging (MRI) scans of 1053 MDD patients (age range 13-79 years) from 15 cohorts within the ENIGMA MDD Working Group. Insomnia severity was measured by summing the insomnia items of the Hamilton Depression Rating Scale (HDRS). Symptom specificity was evaluated with correlates of overall depression severity. Disease specificity was evaluated in two independent samples comprising 2108 healthy controls, and in 260 clinical controls with bipolar disorder. Results showed that MDD patients with more severe insomnia had a smaller cortical surface area, mostly driven by the right insula, left inferior frontal gyrus pars triangularis, left frontal pole, right superior parietal cortex, right medial orbitofrontal cortex, and right supramarginal gyrus. Associations were specific for insomnia severity, and were not found for overall depression severity. Associations were also specific to MDD; healthy controls and clinical controls showed differential insomnia severity association profiles. The findings indicate that MDD patients with more severe insomnia show smaller surfaces in several frontoparietal cortical areas. While explained variance remains small, symptom-specific associations could bring us closer to clues on underlying biological phenomena of MDD.


Outgroup emotion processing in the vACC is modulated by childhood trauma and CACNA1C risk variant.

  • Johannes T Krautheim‎ et al.
  • Social cognitive and affective neuroscience‎
  • 2018‎

A high frequency of outgroup contact-as experienced by urban dwellers and migrants-possibly increases schizophrenia risk. This risk might be further amplified by genetic and environmental risk factors, such as the A-allele of rs1006737 within the calcium voltage-gated channel subunit alpha1 C gene and childhood interpersonal trauma (CIT). Both have been related to ventral anterior cingulate cortex (vACC) functioning. We investigated vACC functioning, during ingroup and outgroup emotion perception in relation to rs1006737 and CIT. Group membership was manipulated through a minimal group paradigm. Thus, in our functional magnetic resonance imaging study, a group of healthy Caucasian participants (n = 178) viewed video-recorded facial emotions (happy vs angry) of actors artificially assigned to represent the ingroup or the outgroup. Rs1006737 and CIT were related to brain activation for group and emotion specific processing. The group-emotion interaction in the vACC showed reduced sensitivity to emotional valence for outgroup member processing. Specifically for the angry outgroup condition, we found a gene by environment interaction in vACC activity. We speculate that the increased schizophrenia risk in migrants and urban dwellers could therefore be facilitated via this pathophysiological pathway.


Brain structural correlates of recurrence following the first episode in patients with major depressive disorder.

  • Hannah Lemke‎ et al.
  • Translational psychiatry‎
  • 2022‎

Former prospective studies showed that the occurrence of relapse in Major Depressive Disorder (MDD) is associated with volume loss in the insula, hippocampus and dorsolateral prefrontal cortex (DLPFC). However, these studies were confounded by the patient's lifetime disease history, as the number of previous episodes predict future recurrence. In order to analyze neural correlates of recurrence irrespective of prior disease course, this study prospectively examined changes in brain structure in patients with first-episode depression (FED) over 2 years. N = 63 FED patients and n = 63 healthy controls (HC) underwent structural magnetic resonance imaging at baseline and after 2 years. According to their disease course during the follow-up interval, patients were grouped into n = 21 FED patients with recurrence (FEDrec) during follow-up and n = 42 FED patients with stable remission (FEDrem). Gray matter volume changes were analysed using group by time interaction analyses of covariance for the DLPFC, hippocampus and insula. Significant group by time interactions in the DLPFC and insula emerged. Pairwise comparisons showed that FEDrec had greater volume decline in the DLPFC and insula from baseline to follow-up compared with FEDrem and HC. No group by time interactions in the hippocampus were found. Cross-sectional analyses at baseline and follow-up revealed no differences between groups. This longitudinal study provides evidence for neural alterations in the DLPFC and insula related to a detrimental course in MDD. These effects of recurrence are already detectable at initial stages of MDD and seem to occur without any prior disease history, emphasizing the importance of early interventions preventing depressive recurrence.


Familial risk for major depression: differential white matter alterations in healthy and depressed participants.

  • Alexandra Winter‎ et al.
  • Psychological medicine‎
  • 2023‎

Major depressive disorder (MDD) has been associated with alterations in brain white matter (WM) microstructure. However, diffusion tensor imaging studies in biological relatives have presented contradicting results on WM alterations and their potential as biomarkers for vulnerability or resilience. To shed more light on associations between WM microstructure and resilience to familial risk, analyses including both healthy and depressed relatives of MDD patients are needed.


Neural Correlates of Positive and Negative Formal Thought Disorder in Individuals with Schizophrenia: An ENIGMA Schizophrenia Working Group Study.

  • Thomas Nickl-Jockschat‎ et al.
  • Research square‎
  • 2023‎

Formal thought disorder (FTD) is a key clinical factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, relationship between FTD symptom dimensions and patterns of regional brain volume deficiencies in schizophrenia remain to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles based on a large multi-site cohort through the ENIGMA Schizophrenia Working Group (752 individuals with schizophrenia and 1256 controls), to unravel the neuroanatomy of positive, negative and total FTD in schizophrenia and their cellular bases. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks for positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD was also linked to microglial cell types. These findings relate different dimensions of FTD to distinct brain structural changes and their cellular underpinnings, improve our mechanistic understanding of these key psychotic symptoms.


Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group.

  • Tiffany C Ho‎ et al.
  • Human brain mapping‎
  • 2022‎

Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD-related differences in subcortical regions using shape analysis. In this meta-analysis of subcortical shape from the ENIGMA-MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta-analysis. Relative to CTL, patients with adolescent-onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = -0.164 to -0.180). Relative to first-episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = -0.173 to -0.184). Our results suggest that previously reported MDD-associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.


White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group.

  • Laura S van Velzen‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD.


Biological sex classification with structural MRI data shows increased misclassification in transgender women.

  • Claas Flint‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2020‎

Transgender individuals (TIs) show brain-structural alterations that differ from their biological sex as well as their perceived gender. To substantiate evidence that the brain structure of TIs differs from male and female, we use a combined multivariate and univariate approach. Gray matter segments resulting from voxel-based morphometry preprocessing of N = 1753 cisgender (CG) healthy participants were used to train (N = 1402) and validate (20% holdout N = 351) a support-vector machine classifying the biological sex. As a second validation, we classified N = 1104 patients with depression. A third validation was performed using the matched CG sample of the transgender women (TW) application sample. Subsequently, the classifier was applied to N = 26 TW. Finally, we compared brain volumes of CG-men, women, and TW-pre/post treatment cross-sex hormone treatment (CHT) in a univariate analysis controlling for sexual orientation, age, and total brain volume. The application of our biological sex classifier to the transgender sample resulted in a significantly lower true positive rate (TPR-male = 56.0%). The TPR did not differ between CG-individuals with (TPR-male = 86.9%) and without depression (TPR-male = 88.5%). The univariate analysis of the transgender application-sample revealed that TW-pre/post treatment show brain-structural differences from CG-women and CG-men in the putamen and insula, as well as the whole-brain analysis. Our results support the hypothesis that brain structure in TW differs from brain structure of their biological sex (male) as well as their perceived gender (female). This finding substantiates evidence that TIs show specific brain-structural alterations leading to a different pattern of brain structure than CG-individuals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: