Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Probabilistic Random Forest improves bioactivity predictions close to the classification threshold by taking into account experimental uncertainty.

  • Lewis H Mervin‎ et al.
  • Journal of cheminformatics‎
  • 2021‎

Measurements of protein-ligand interactions have reproducibility limits due to experimental errors. Any model based on such assays will consequentially have such unavoidable errors influencing their performance which should ideally be factored into modelling and output predictions, such as the actual standard deviation of experimental measurements (σ) or the associated comparability of activity values between the aggregated heterogenous activity units (i.e., Ki versus IC50 values) during dataset assimilation. However, experimental errors are usually a neglected aspect of model generation. In order to improve upon the current state-of-the-art, we herein present a novel approach toward predicting protein-ligand interactions using a Probabilistic Random Forest (PRF) classifier. The PRF algorithm was applied toward in silico protein target prediction across ~ 550 tasks from ChEMBL and PubChem. Predictions were evaluated by taking into account various scenarios of experimental standard deviations in both training and test sets and performance was assessed using fivefold stratified shuffled splits for validation. The largest benefit in incorporating the experimental deviation in PRF was observed for data points close to the binary threshold boundary, when such information was not considered in any way in the original RF algorithm. For example, in cases when σ ranged between 0.4-0.6 log units and when ideal probability estimates between 0.4-0.6, the PRF outperformed RF with a median absolute error margin of ~ 17%. In comparison, the baseline RF outperformed PRF for cases with high confidence to belong to the active class (far from the binary decision threshold), although the RF models gave errors smaller than the experimental uncertainty, which could indicate that they were overtrained and/or over-confident. Finally, the PRF models trained with putative inactives decreased the performance compared to PRF models without putative inactives and this could be because putative inactives were not assigned an experimental pXC50 value, and therefore they were considered inactives with a low uncertainty (which in practice might not be true). In conclusion, PRF can be useful for target prediction models in particular for data where class boundaries overlap with the measurement uncertainty, and where a substantial part of the training data is located close to the classification threshold.


Orthologue chemical space and its influence on target prediction.

  • Lewis H Mervin‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2018‎

In silico approaches often fail to utilize bioactivity data available for orthologous targets due to insufficient evidence highlighting the benefit for such an approach. Deeper investigation into orthologue chemical space and its influence toward expanding compound and target coverage is necessary to improve the confidence in this practice.


Target prediction utilising negative bioactivity data covering large chemical space.

  • Lewis H Mervin‎ et al.
  • Journal of cheminformatics‎
  • 2015‎

In silico analyses are increasingly being used to support mode-of-action investigations; however many such approaches do not utilise the large amounts of inactive data held in chemogenomic repositories. The objective of this work is concerned with the integration of such bioactivity data in the target prediction of orphan compounds to produce the probability of activity and inactivity for a range of targets. To this end, a novel human bioactivity data set was constructed through the assimilation of over 195 million bioactivity data points deposited in the ChEMBL and PubChem repositories, and the subsequent application of a sphere-exclusion selection algorithm to oversample presumed inactive compounds.


Extending in Silico Protein Target Prediction Models to Include Functional Effects.

  • Lewis H Mervin‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

In silico protein target deconvolution is frequently used for mechanism-of-action investigations; however existing protocols usually do not predict compound functional effects, such as activation or inhibition, upon binding to their protein counterparts. This study is hence concerned with including functional effects in target prediction. To this end, we assimilated a bioactivity training set for 332 targets, comprising 817,239 active data points with unknown functional effect (binding data) and 20,761,260 inactive compounds, along with 226,045 activating and 1,032,439 inhibiting data points from functional screens. Chemical space analysis of the data first showed some separation between compound sets (binding and inhibiting compounds were more similar to each other than both binding and activating or activating and inhibiting compounds), providing a rationale for implementing functional prediction models. We employed three different architectures to predict functional response, ranging from simplistic random forest models ('Arch1') to cascaded models which use separate binding and functional effect classification steps ('Arch2' and 'Arch3'), differing in the way training sets were generated. Fivefold stratified cross-validation outlined cascading predictions provides superior precision and recall based on an internal test set. We next prospectively validated the architectures using a temporal set of 153,467 of in-house data points (after a 4-month interim from initial data extraction). Results outlined Arch3 performed with the highest target class averaged precision and recall scores of 71% and 53%, which we attribute to the use of inactive background sets. Distance-based applicability domain (AD) analysis outlined that Arch3 provides superior extrapolation into novel areas of chemical space, and thus based on the results presented here, propose as the most suitable architecture for the functional effect prediction of small molecules. We finally conclude including functional effects could provide vital insight in future studies, to annotate cases of unanticipated functional changeover, as outlined by our CHRM1 case study.


A multi-label approach to target prediction taking ligand promiscuity into account.

  • Avid M Afzal‎ et al.
  • Journal of cheminformatics‎
  • 2015‎

According to Cobanoglu et al., it is now widely acknowledged that the single target paradigm (one protein/target, one disease, one drug) that has been the dominant premise in drug development in the recent past is untenable. More often than not, a drug-like compound (ligand) can be promiscuous - it can interact with more than one target protein. In recent years, in in silico target prediction methods the promiscuity issue has generally been approached computationally in three main ways: ligand-based methods; target-protein-based methods; and integrative schemes. In this study we confine attention to ligand-based target prediction machine learning approaches, commonly referred to as target-fishing. The target-fishing approaches that are currently ubiquitous in cheminformatics literature can be essentially viewed as single-label multi-classification schemes; these approaches inherently bank on the single target paradigm assumption that a ligand can zero in on one single target. In order to address the ligand promiscuity issue, one might be able to cast target-fishing as a multi-label multi-class classification problem. For illustrative and comparison purposes, single-label and multi-label Naïve Bayes classification models (denoted here by SMM and MMM, respectively) for target-fishing were implemented. The models were constructed and tested on 65,587 compounds/ligands and 308 targets retrieved from the ChEMBL17 database.


Maximizing gain in high-throughput screening using conformal prediction.

  • Fredrik Svensson‎ et al.
  • Journal of cheminformatics‎
  • 2018‎

Iterative screening has emerged as a promising approach to increase the efficiency of screening campaigns compared to traditional high throughput approaches. By learning from a subset of the compound library, inferences on what compounds to screen next can be made by predictive models, resulting in more efficient screening. One way to evaluate screening is to consider the cost of screening compared to the gain associated with finding an active compound. In this work, we introduce a conformal predictor coupled with a gain-cost function with the aim to maximise gain in iterative screening. Using this setup we were able to show that by evaluating the predictions on the training data, very accurate predictions on what settings will produce the highest gain on the test data can be made. We evaluate the approach on 12 bioactivity datasets from PubChem training the models using 20% of the data. Depending on the settings of the gain-cost function, the settings generating the maximum gain were accurately identified in 8-10 out of the 12 datasets. Broadly, our approach can predict what strategy generates the highest gain based on the results of the cost-gain evaluation: to screen the compounds predicted to be active, to screen all the remaining data, or not to screen any additional compounds. When the algorithm indicates that the predicted active compounds should be screened, our approach also indicates what confidence level to apply in order to maximize gain. Hence, our approach facilitates decision-making and allocation of the resources where they deliver the most value by indicating in advance the likely outcome of a screening campaign.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: