Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Nipah Virus V Protein Binding Alters MDA5 Helicase Folding Dynamics.

  • Nicole D Wagner‎ et al.
  • ACS infectious diseases‎
  • 2022‎

Nipah virus (NiV) is an emerging and deadly zoonotic paramyxovirus that is responsible for periodic epidemics of acute respiratory illness and encephalitis in humans. Previous studies have shown that the NiV V protein antagonizes host antiviral immunity, but the molecular mechanism is incompletely understood. To address this gap, we biochemically characterized NiV V binding to the host pattern recognition receptor MDA5. We find that the C-terminal domain of NiV V (VCTD) is sufficient to bind the MDA5SF2 domain when recombinantly co-expressed in bacteria. Analysis by hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies revealed that NiV VCTD is conformationally dynamic, and binding to MDA5 reduces the dynamics of VCTD. Our results also suggest that the β-sheet region in between the MDA5 Hel1, Hel2, and Hel2i domains exhibits rapid HDX. Upon VCTD binding, these β-sheet and adjacent residues show significant protection. Collectively, our findings suggest that NiV V binding disrupts the helicase fold and dynamics of MDA5 to antagonize host antiviral immunity.


Plasmonic Fluor-Enhanced Antigen Arrays for High-Throughput, Serological Studies of SARS-CoV-2.

  • Abraham J Qavi‎ et al.
  • ACS infectious diseases‎
  • 2022‎

Serological testing for acute infection or prior exposure is critical for patient management and coordination of public health decisions during outbreaks. Current methods have several limitations, including variable performance, relatively low analytical and clinical sensitivity, and poor detection due to antigenic drift. Serological methods for SARS-CoV-2 detection for the ongoing COVID-19 pandemic suffer from several of these limitations and serves as a reminder of the critical need for new technologies. Here, we describe the use of ultrabright fluorescent reagents, Plasmonic Fluors, coupled with antigen arrays that address a subset of these limitations. We demonstrate its application using patient samples in SARS-CoV-2 serological assays. In our multiplexed assay, SARS-CoV-2 antigens were spotted into 48-plex arrays within a single well of a 96-well plate and used to evaluate remnant laboratory samples of SARS-CoV-2 positive patients. Signal-readout was performed with Auragent Bioscience's Empower microplate reader, and microarray analysis software. Sample volumes of 1 μL were used. High sensitivity of the Plasmonic Fluors combined with the array format enabled us to profile patient serological response to eight distinct SARS-CoV-2 antigens and evaluate responses to IgG, IgM, and IgA. Sensitivities for SARS-CoV-2 antigens during the symptomatic state ranged between 72.5 and 95.0%, specificity between 62.5 and 100%, and the resulting area under the curve values between 0.76 and 0.97. Together, these results highlight the increased sensitivity for low sample volumes and multiplex capability. These characteristics make Plasmonic Fluor-enhanced antigen arrays an attractive technology for serological studies for the COVID-19 pandemic and beyond.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: