Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

A Novel Analog Reasoning Paradigm: New Insights in Intellectually Disabled Patients.

  • Aurore Curie‎ et al.
  • PloS one‎
  • 2016‎

Intellectual Disability (ID) is characterized by deficits in intellectual functions such as reasoning, problem-solving, planning, abstract thinking, judgment, and learning. As new avenues are emerging for treatment of genetically determined ID (such as Down's syndrome or Fragile X syndrome), it is necessary to identify objective reliable and sensitive outcome measures for use in clinical trials.


Certainty of genuine treatment increases drug responses among intellectually disabled patients.

  • Karin B Jensen‎ et al.
  • Neurology‎
  • 2017‎

To determine the placebo component of treatment responses in patients with intellectual disability (ID).


Basal ganglia involvement in ARX patients: The reason for ARX patients very specific grasping?

  • Aurore Curie‎ et al.
  • NeuroImage. Clinical‎
  • 2018‎

The ARX (Aristaless Related homeoboX) gene was identified in 2002 as responsible for XLAG syndrome, a lissencephaly characterized by an almost complete absence of cortical GABAergic interneurons, and for milder forms of X-linked Intellectual Disability (ID) without apparent brain abnormalities. The most frequent mutation found in the ARX gene, a duplication of 24 base pairs (c.429_452dup24) in exon 2, results in a recognizable syndrome in which patients present ID without primary motor impairment, but with a very specific upper limb distal motor apraxia associated with a pathognomonic hand-grip, described as developmental Limb Kinetic Apraxia (LKA). In this study, we first present ARX expression during human fetal brain development showing that it is strongly expressed in GABAergic neuronal progenitors during the second and third trimester of pregnancy. We show that although ARX expression strongly decreases towards the end of gestation, it is still present after birth in some neurons of the basal ganglia, thalamus and cerebral cortex, suggesting that ARX also plays a role in more mature neuron functioning. Then, using morphometric brain MRI in 13 ARX patients carrying c.429_452dup24 mutation and in 13 sex- and age-matched healthy controls, we show that ARX patients have a significantly decreased volume of several brain structures including the striatum (and more specifically the caudate nucleus), hippocampus and thalamus as well as decreased precentral gyrus cortical thickness. We observe a significant correlation between caudate nucleus volume reduction and motor impairment severity quantified by kinematic parameter of precision grip. As basal ganglia are known to regulate sensorimotor processing and are involved in the control of precision gripping, the combined decrease in cortical thickness of primary motor cortex and basal ganglia volume in ARX dup24 patients is very likely the anatomical substrate of this developmental form of LKA.


Neuropsychological and neuroanatomical phenotype in 17 patients with cystinosis.

  • Aurore Curie‎ et al.
  • Orphanet journal of rare diseases‎
  • 2020‎

Cystinosis is a rare autosomal recessive disorder caused by intracellular cystine accumulation. Proximal tubulopathy (Fanconi syndrome) is one of the first signs, leading to end-stage renal disease between the age of 12 and 16. Other symptoms occur later and encompass endocrinopathies, distal myopathy and deterioration of the central nervous system. Treatment with cysteamine if started early can delay the progression of the disease. Little is known about the neurological impairment which occurs later. The goal of the present study was to find a possible neuroanatomical dysmorphic pattern that could help to explain the cognitive profile of cystinosis patients. We also performed a detailed review of the literature on neurocognitive complications associated with cystinosis.


Placebo Responses in Genetically Determined Intellectual Disability: A Meta-Analysis.

  • Aurore Curie‎ et al.
  • PloS one‎
  • 2015‎

Genetically determined Intellectual Disability (ID) is an intractable condition that involves severe impairment of mental abilities such as learning, reasoning and predicting the future. As of today, little is known about the placebo response in patients with ID.


Prisms adaptation improves haptic object discrimination in hemispatial neglect.

  • Patrice Revol‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2020‎

Neglect manifestations are typically explored in the visual modality. Although they are less commonly investigated tactile deficits also exist, and the aim of this study was to explore neglect in this modality. A haptic object discrimination task was designed to assess whether or not shape perception is impaired in seven right brain damaged patients with or without neglect. Each patient's performance on the object discrimination task was assessed before and after a brief period of prism adaptation, a bottom-up rehabilitation technique known to improve neglect symptoms. The results suggest that a haptic deficit - in the form of substantially more left errors - is present only in patients with neglect. Following prism adaptation, the left bias error rates in neglect patients were substantially reduced, and were similar to those observed in patients without neglect. Moreover, the haptic processing of the right side of objects also improved slightly. This finding suggests an expansion of the effects of prism adaptation to the unexposed, tactile modality supporting the cross-modal central effect hypothesis.


A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations.

  • Aline Dubos‎ et al.
  • Human molecular genetics‎
  • 2018‎

The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: