Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Theranostic Approach for Metastatic Pigmented Melanoma Using ICF15002, a Multimodal Radiotracer for Both PET Imaging and Targeted Radionuclide Therapy.

  • Latifa Rbah-Vidal‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

This work reports, in melanoma models, the theranostic potential of ICF15002 as a single fluorinated and iodinated melanin-targeting compound.


Development of 18F-Labeled Radiotracers for PET Imaging of the Adenosine A2A Receptor: Synthesis, Radiolabeling and Preliminary Biological Evaluation.

  • Thu Hang Lai‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


From netrin-1-targeted SPECT/CT to internal radiotherapy for management of advanced solid tumors.

  • David Kryza‎ et al.
  • EMBO molecular medicine‎
  • 2023‎

Targeted radionuclide therapy is a revolutionary tool for the treatment of highly spread metastatic cancers. Most current approaches rely on the use of vectors to deliver radionuclides to tumor cells, targeting membrane-bound cancer-specific moieties. Here, we report the embryonic navigation cue netrin-1 as an unanticipated target for vectorized radiotherapy. While netrin-1, known to be re-expressed in tumoral cells to promote cancer progression, is usually characterized as a diffusible ligand, we demonstrate here that netrin-1 is actually poorly diffusible and bound to the extracellular matrix. A therapeutic anti-netrin-1 monoclonal antibody (NP137) has been preclinically developed and was tested in various clinical trials showing an excellent safety profile. In order to provide a companion test detecting netrin-1 in solid tumors and allowing the selection of therapy-eligible patients, we used the clinical-grade NP137 agent and developed an indium-111-NODAGA-NP137 single photon emission computed tomography (SPECT) contrast agent. NP137-111 In provided specific detection of netrin-1-positive tumors with an excellent signal-to-noise ratio using SPECT/CT imaging in different mouse models. The high specificity and strong affinity of NP137 paved the way for the generation of lutetium-177-DOTA-NP137, a novel vectorized radiotherapy, which specifically accumulated in netrin-1-positive tumors. We demonstrate here, using tumor cell-engrafted mouse models and a genetically engineered mouse model, that a single systemic injection of NP137-177 Lu provides important antitumor effects and prolonged mouse survival. Together, these data support the view that NP137-111 In and NP137-177 Lu may represent original and unexplored imaging and therapeutic tools against advanced solid cancers.


Radiosynthesis and biological evaluation of [18F]AG-120 for PET imaging of the mutant isocitrate dehydrogenase 1 in glioma.

  • Thu Hang Lai‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2024‎

Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.


99mTc-NTP 15-5 assessment of the early therapeutic response of chondrosarcoma to zoledronic acid in the Swarm rat orthotopic model.

  • Elisabeth Miot-Noirault‎ et al.
  • EJNMMI research‎
  • 2013‎

Since proteoglycans (PGs) appear as key partners in chondrosarcoma biology, PG-targeted imaging using the radiotracer 99mTc-N-(triethylammonium)-3-propyl-[15]ane-N5 (99mTc-NTP 15-5) developed by our group was previously demonstrated to be a good single-photon emission computed tomography tracer for cartilage neoplasms. We therefore initiated this new preclinical study to evaluate the relevance of 99mTc-NTP 15-5 imaging for the in vivo monitoring and quantitative assessment of chondrosarcoma response to zoledronic acid (ZOL) in the Swarm rat orthotopic model.


Synthesis and Biological Evaluation of a Novel 18F-Labeled Radiotracer for PET Imaging of the Adenosine A2A Receptor.

  • Thu Hang Lai‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The adenosine A2A receptor (A2AR) has emerged as a potential non-dopaminergic target for the treatment of Parkinson's disease and, thus, the non-invasive imaging with positron emission tomography (PET) is of utmost importance to monitor the receptor expression and occupancy during an A2AR-tailored therapy. Aiming at the development of a PET radiotracer, we herein report the design of a series of novel fluorinated analogs (TOZ1-TOZ7) based on the structure of the A2AR antagonist tozadenant, and the preclinical evaluation of [18F]TOZ1. Autoradiography proved A2AR-specific in vitro binding of [18F]TOZ1 to striatum of mouse and pig brain. Investigations of the metabolic stability in mice revealed parent fractions of more than 76% and 92% of total activity in plasma and brain samples, respectively. Dynamic PET/magnetic resonance imaging (MRI) studies in mice revealed a brain uptake but no A2AR-specific in vivo binding.


Development of a New Radiofluorinated Quinoline Analog for PET Imaging of Phosphodiesterase 5 (PDE5) in Brain.

  • Jianrong Liu‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2016‎

Phosphodiesterases (PDEs) are enzymes that play a major role in cell signalling by hydrolysing the secondary messengers cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP) throughout the body and brain. Altered cyclic nucleotide-mediated signalling has been associated with a wide array of disorders, including neurodegenerative disorders. Recently, PDE5 has been shown to be involved in neurodegenerative disorders such as Alzheimer's disease, but its precise role has not been elucidated yet. To visualize and quantify the expression of this enzyme in brain, we developed a radiotracer for specific PET imaging of PDE5. A quinoline-based lead compound has been structurally modified resulting in the fluoroethoxymethyl derivative ICF24027 with high inhibitory activity towards PDE5 (IC50 = 1.86 nM). Radiolabelling with fluorine-18 was performed by a one-step nucleophilic substitution reaction using a tosylate precursor (RCY(EOB) = 12.9% ± 1.8%; RCP > 99%; SA(EOS) = 70-126 GBq/μmol). In vitro autoradiographic studies of [(18)F]ICF24027 on different mouse tissue as well as on porcine brain slices demonstrated a moderate specific binding to PDE5. In vivo studies in mice revealed that [(18)F]ICF24027 was metabolized under formation of brain penetrable radiometabolites making the radiotracer unsuitable for PET imaging of PDE5 in brain.


Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy.

  • Claire Viallard‎ et al.
  • Oncotarget‎
  • 2016‎

Radiolabelled melanin ligands offer an interesting strategy for the treatment of disseminated pigmented melanoma. One of these molecules, ICF01012 labelled with iodine 131, induced a significant slowing of melanoma growth. Here, we have explored the combination of [131I]ICF01012 with coDbait, a DNA repair inhibitor, to overcome melanoma radioresistance and increase targeted radionuclide therapy (TRT) efficacy. In human SK-Mel 3 melanoma xenograft, the addition of coDbait had a synergistic effect on tumor growth and median survival. The anti-tumor effect was additive in murine syngeneic B16Bl6 model whereas coDbait combination with [131I]ICF01012 did not increase TRT side effects in secondary pigmented tissues (e.g. hair follicles, eyes). Our results confirm that DNA lesions induced by TRT were not enhanced with coDbait association but, the presence of micronuclei and cell cycle blockade in tumor shows that coDbait acts by interrupting or delaying DNA repair. In this study, we demonstrate for the first time, the usefulness of DNA repair traps in the context of targeted radionuclide therapy.


Synthesis and In Vitro Comparison of DOTA, NODAGA and 15-5 Macrocycles as Chelators for the 64Cu-Labelling of Immunoconjugates.

  • Aurélie Maisonial-Besset‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

The development of 64Cu-based immuno-PET radiotracers requires the use of copper-specific bifunctional chelators (BFCs) that contain functional groups allowing both convenient bioconjugation and stable copper complexes to limit in vivo bioreduction, transmetallation and/or transchelation. The excellent in vivo kinetic inertness of the pentaazamacrocyclic [64Cu]Cu-15-5 complex prompted us to investigate its potential for the 64Cu-labelling of monoclonal antibodies (mAbs), compared with the well-known NODAGA and DOTA chelators. To this end, three NODAGA, DOTA and 15-5-derived BFCs, containing a pendant azadibenzocyclooctyne moiety, were synthesised and a robust methodology was determined to form covalent bonds between them and azide-functionalised trastuzumab, an anti-HER2 mAb, using strain-promoted azide-alkyne cycloaddition. Unlike the DOTA derivative, the NODAGA- and 15-5-mAb conjugates were radiolabelled with 64Cu, obtaining excellent radiochemical yields, under mild conditions. Although all the radioimmunoconjugates showed excellent stability in PBS or mouse serum, [64Cu]Cu-15-5- and [64Cu]Cu-NODAGA-trastuzumab presented higher resistance to transchelation when challenged by EDTA. Finally, the immunoreactive fraction of the radioimmunoconjugates (88-94%) was determined in HER-2 positive BT474 human breast cancer cells, confirming that the bioconjugation and radiolabelling processes implemented had no significant impact on antigen recognition.


Improved in vivo PET imaging of the adenosine A2A receptor in the brain using [18F]FLUDA, a deuterated radiotracer with high metabolic stability.

  • Thu Hang Lai‎ et al.
  • European journal of nuclear medicine and molecular imaging‎
  • 2021‎

The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH.


Development and characterization of a human three-dimensional chondrosarcoma culture for in vitro drug testing.

  • Aurélien Voissiere‎ et al.
  • PloS one‎
  • 2017‎

It has been suggested that chemoresistance of chondrosarcoma (CHS), the cartilage tumor, is caused by the phenotypic microenvironmental features of the tumor tissue, mainly the chondrogenic extracellular matrix (ECM), and hypoxia. We developed and characterized a multicellular tumor spheroid (MCTS) of human chondrosarcoma HEMC-SS cells to gain insight into tumor cell biology and drug response. At Day 7, HEMC-SS spheroids exhibited a homogeneous distribution of proliferative Ki-67 positive cells, whereas in larger spheroids (Day 14 and Day 20), proliferation was mainly localized in the periphery. In the core of larger spheroids, apoptotic cells were evidenced by TUNEL assay, and hypoxia by pimonidazole staining. Interestingly, VEGF excretion, evidenced by ELISA on culture media, was detectable from Day 14 spheroids, and increased as the spheroids grew in size. HEMC-SS spheroids synthesized a chondrogenic extracellular matrix rich in glycosaminoglycans and type-2 collagen. Finally, we investigated the sensitivity of Day 7 and Day 14 chondrosarcoma MCTS to hypoxia-activated prodrug TH-302 and doxorubicin compared with their 2D counterparts. As expected, TH-302 exhibited higher cytotoxic activity on larger hypoxic spheroids (Day 14) than on non-hypoxic spheroids (Day 7), with multicellular resistance index (MCRI) values of 7.7 and 9.1 respectively. For doxorubicin, the larger-sized spheroids exhibited higher drug resistance (MCRI of 5.0 for Day 7 and 18.3 for Day 14 spheroids), possibly due to impeded drug penetration into the deep layer of spheroids, evidenced by its auto-fluorescence property. We have developed a model of human chondrosarcoma MCTS that combines an ECM rich in glycosaminoglycans with a high hypoxic core associated with VEGF excretion. This model could offer a more predictive in vitro chondrosarcoma system for screening drugs targeting tumor cells and their microenvironment.


Proteoglycan-targeting applied to hypoxia-activated prodrug therapy in chondrosarcoma: first proof-of-concept.

  • Aurélien Voissiere‎ et al.
  • Oncotarget‎
  • 2017‎

Due to its abundant chondrogenic matrix and hypoxic tissue, chondrosarcoma is chemo- and radio-resistant. Our group has developed a proteoglycan targeting strategy by using a quaternary ammonium (QA) function as a carrier of DNA alkylating agents to chondrosarcoma environment. Here, we assessed the relevance of this strategy applied to hypoxia-activated prodrugs, by conjugating a QA to 2-nitroimidazole phosphoramidate. This derivative, named as 8-QA, was evaluated respectively to its non-QA equivalent and to a QA-conjugated but non-hypoxia activated. Firstly binding to aggrecan was confirmed from dissociation constant determined by Surface Plasmon Resonance. In vitro, in HEMC-SS chondrosarcoma cells cultured in monolayer and in spheroids, 8-QA showed higher cytotoxic activity in hypoxia versus normoxia, and led to a strong accumulation of cells in S phase and apoptosis. In vivo, a HEMC-SS xenograft model was implanted on SCID mice and characterized for hypoxia by photoacoustic imaging as well as proteoglycan content. When HEMC-SS bearing mice were given 8-QA at 47 μmol/kg according to a q4d x 6 schedule, a significant 62.1% inhibition of tumor growth was observed, without associated hematological side effects. Mechanistic studies of treated tumors highlighted decrease in mitotic index associated to increase in both p21 and p53S15 markers. Interestingly, 8-QA treatment induced an increase of DNA damages as measured by γH2AX predominantly found in pimonidazole-positive hypoxic areas. These preclinical results are the first to demonstrate the interest of addressing hypoxia-activated prodrugs selectively to proteoglycan of chondrogenic tumor tissue, as a promising therapeutic strategy.


Targeted Radionuclide Therapy Decreases Melanoma Lung Invasion by Modifying Epithelial-Mesenchymal Transition-Like Mechanisms.

  • Hussein Akil‎ et al.
  • Translational oncology‎
  • 2019‎

Melanin-radiolabeled molecules for targeted radionuclide therapy (TRT) provide a promising approach for the treatment of pigmented melanoma. Among these radiolabeled molecules, the iodinated melanin-specific binding molecule ([131I]ICF01012) has shown a significant antitumor effect on metastatic melanoma preclinical models. We report herein that [131I]ICF01012 decreases the epithelial-mesenshymal transition-like (EMT-like) markers in both in vivo and in vitro three-dimensional (3D) melanoma spheroid models. [131I]ICF01012 spheroids irradiation resulted in reduced clonogenic capacity of all pigmented spheroids accompanied by increased protein expression levels of phosphorylated H2A.X, p53 and its downstream target p21. In addition, [131I]ICF01012 treatment leads to a significant increase of cell pigmentation as demonstrated in SK-MEL3 human xenograft model. We also showed that [131I]ICF01012 decreases the size and the number of melanoma lung colonies in the syngeneic murine B16BL6 in vivo model assessing its potentiality to kill circulating tumor cells. Taken together, these results indicate that [131I]ICF01012 reduces metastatic capacity of melanoma cells presumably through EMT-like reduction and cell differentiation induction.


Development and Biological Evaluation of the First Highly Potent and Specific Benzamide-Based Radiotracer [18F]BA3 for Imaging of Histone Deacetylases 1 and 2 in Brain.

  • Oliver Clauß‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2022‎

The degree of acetylation of lysine residues on histones influences the accessibility of DNA and, furthermore, the gene expression. Histone deacetylases (HDACs) are overexpressed in various tumour diseases, resulting in the interest in HDAC inhibitors for cancer therapy. The aim of this work is the development of a novel 18F-labelled HDAC1/2-specific inhibitor with a benzamide-based zinc-binding group to visualize these enzymes in brain tumours by positron emission tomography (PET). BA3, exhibiting high inhibitory potency for HDAC1 (IC50 = 4.8 nM) and HDAC2 (IC50 = 39.9 nM), and specificity towards HDAC3 and HDAC6 (specificity ratios >230 and >2080, respectively), was selected for radiofluorination. The two-step one-pot radiosynthesis of [18F]BA3 was performed in a TRACERlab FX2 N radiosynthesizer by a nucleophilic aliphatic substitution reaction. The automated radiosynthesis of [18F]BA3 resulted in a radiochemical yield of 1%, a radiochemical purity of >96% and a molar activity between 21 and 51 GBq/µmol (n = 5, EOS). For the characterization of BA3, in vitro and in vivo experiments were carried out. The results of these pharmacological and pharmacokinetic studies indicate a suitable inhibitory potency of BA3, whereas the applicability for non-invasive imaging of HDAC1/2 by PET requires further optimization of the properties of this compound.


A"Proteoglycan targeting strategy" for the scintigraphic imaging and monitoring of the swarm rat chondrosarcoma orthotopic model.

  • Caroline Peyrode‎ et al.
  • Sarcoma‎
  • 2011‎

Our lab developed (99m)Tc-NTP 15-5 radiotracer as targeting proteoglycans (PGs) for the scintigraphic imaging of joint. This paper reports preclinical results of (99m)Tc-NTP 15-5 imaging of an orthotopic model of Swarm rat chondrosarcoma (SRC). (99m)Tc-NTP 15-5 imaging of SRC-bearing and sham-operated animals was performed and quantified at regular intervals after surgery and compared to bone scintigraphy and tumoural volume. Tumours were characterized by histology and PG assay. SRC exhibited a significant (99m)Tc-NTP 15-5 uptake at very early stage after implant (with tumour/muscle ratio of 1.61 ± 0.14), whereas no measurable tumour was evidenced. As tumour grew, mean tumour/muscle ratio was increased by 2.4, between the early and late stage of pathology. Bone scintigraphy failed to image chondrosarcoma, even at the later stage of study. (99m)Tc-NTP 15-5 imaging provided a suitable set of quantitative criteria for the in vivo characterization of chondrosarcoma behaviour in bone environment, useful for achieving a greater understanding of the pathology.


Newly Synthesized Fluorinated Cinnamylpiperazines Possessing Low In Vitro MAO-B Binding.

  • Ivana I Jevtić‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Herein, we report on the synthesis and pharmacological evaluation of ten novel fluorinated cinnamylpiperazines as potential monoamine oxidase B (MAO-B) ligands. The designed derivatives consist of either cinnamyl or 2-fluorocinnamyl moieties connected to 2-fluoropyridylpiperazines. The three-step synthesis starting from commercially available piperazine afforded the final products in overall yields between 9% and 29%. An in vitro competitive binding assay using l-[3H]Deprenyl as radioligand was developed and the MAO-B binding affinities of the synthesized derivatives were assessed. Docking studies revealed that the compounds 8-17 were stabilized in both MAO-B entrance and substrate cavities, thus resembling the binding pose of l-Deprenyl. Although our results revealed that the novel fluorinated cinnamylpiperazines 8-17 do not possess sufficient MAO-B binding affinity to be eligible as positron emission tomography (PET) agents, the herein developed binding assay and the insights gained within our docking studies will certainly pave the way for further development of MAO-B ligands.


Antibody PEGylation in bioorthogonal pretargeting with trans-cyclooctene/tetrazine cycloaddition: in vitro and in vivo evaluation in colorectal cancer models.

  • Aurélie Rondon‎ et al.
  • Scientific reports‎
  • 2017‎

Bioorthogonal chemistry represents a challenging approach in pretargeted radioimmunotherapy (PRIT). We focus here on mAb modifications by grafting an increase amount of trans-cyclooctene (TCO) derivatives (0 to 30 equivalents with respect to mAb) bearing different polyethylene glycol (PEG) linkers between mAb and TCO (i.e. PEG0 (1), PEG4 (2) and PEG12 (3)) and assessing their functionality. We used colorectal xenograft (HT29/Ts29.2) and peritoneal carcinomatosis (A431-CEA-Luc/35A7) as tumor cells/mAbs models and fluorescent tetrazines (TZ). MALDI-TOF MS shows that grafting with 2,3 increases significantly the number of TCO per mAb compared with no PEG. In vitro immunofluorescence showed that Ts29.2 and 35A7 labeling intensity is correlated with the number of TCO when using 1,3 while signals reach a maximum at 10 equivalents when using 2. Under 10 equivalents conditions, the capacity of resulting mAbs-1-3 for antigen recognition is similar when reported per grafted TCO and comparable to mAbs without TCO. In vivo, on both models, pretargeting with mAbs-2,3 followed by TZ injection induced a fluorescent signal two times lower than with mAbs-1. These findings suggest that while PEG linkers allow a better accessibility for TCO grafting, it might decrease the number of reactive TCO. In conclusion, mAb-1 represents the best candidate for PRIT.


Tetraspanin 8 (TSPAN 8) as a potential target for radio-immunotherapy of colorectal cancer.

  • Aurelie Maisonial-Besset‎ et al.
  • Oncotarget‎
  • 2017‎

Tetraspanin 8 (TSPAN8) overexpression is correlated with poor prognosis in human colorectal cancer (CRC). A murine mAb Ts29.2 specific for human TSPAN8 provided significant efficiency for immunotherapy in CRC pre-clinical models. We therefore evaluate the feasability of targeting TSPAN8 in CRC with radiolabeled Ts29.2. Staining of tissue micro-arrays with Ts29.2 revealed that TSPAN8 espression was restricted to a few human healthy tissues. DOTA-Ts29.2 was radiolabeled with 111In or 177Lu with radiochemical purities >95%, specific activity ranging from 300 to 600 MBq/mg, and radioimmunoreactive fractions >80%. The biodistribution of [111In]DOTA-Ts29.2 in nude mice bearing HT29 or SW480 CRC xenografts showed a high specificity of tumor localization with high tumor/blood ratios (HT29: 4.3; SW480-TSPAN8: 3.9 at 72h and 120h post injection respectively). Tumor-specific absorbed dose calculations for [177Lu]DOTA-Ts29.2 was 1.89 Gy/MBq, establishing the feasibility of using radioimmunotherapy of CRC with this radiolabeled antibody. A significant inhibition of tumor growth in HT29 tumor-bearing mice treated with [177Lu]DOTA-Ts29.2 was observed compared to control groups. Ex vivo experiments revealed specific DNA double strand breaks associated with cell apoptosis in [177Lu]DOTA-Ts29.2 treated tumors compared to controls. Overall, we provide a proof-of-concept for the use of [111In/177Lu]DOTA-Ts29.2 that specifically target in vivo aggressive TSPAN8-positive cells in CRC.


PET Imaging of the Adenosine A2A Receptor in the Rotenone-Based Mouse Model of Parkinson's Disease with [18F]FESCH Synthesized by a Simplified Two-Step One-Pot Radiolabeling Strategy.

  • Susann Schröder‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

The adenosine A2A receptor (A2AR) is regarded as a particularly appropriate target for non-dopaminergic treatment of Parkinson's disease (PD). An increased A2AR availability has been found in the human striatum at early stages of PD and in patients with PD and dyskinesias. The aim of this small animal positron emission tomography/magnetic resonance (PET/MR) imaging study was to investigate whether rotenone-treated mice reflect the aspect of striatal A2AR upregulation in PD. For that purpose, we selected the known A2AR-specific radiotracer [18F]FESCH and developed a simplified two-step one-pot radiosynthesis. PET images showed a high uptake of [18F]FESCH in the mouse striatum. Concomitantly, metabolism studies with [18F]FESCH revealed the presence of a brain-penetrant radiometabolite. In rotenone-treated mice, a slightly higher striatal A2AR binding of [18F]FESCH was found. Nonetheless, the correlation between the increased A2AR levels within the proposed PD animal model remains to be further investigated.


[18F]ML-10 PET imaging fails to assess early response to neoadjuvant chemotherapy in a preclinical model of triple negative breast cancer.

  • Elodie Jouberton‎ et al.
  • EJNMMI research‎
  • 2020‎

Pathological complete response to the neoadjuvant therapy (NAT) for triple negative breast cancer (TNBC) is predictive of prolonged patient survival. Methods for early evaluation of NAT efficiency are still needed, in order to rapidly adjust the therapeutic strategy in case of initial non-response. One option for this is molecular imaging of apoptosis induced by chemotherapy. Therefore, we investigated the capacity of [18F]ML-10 PET imaging, an apoptosis radiotracer, to detect tumor cell apoptosis and early predict the therapeutic response of human TNBC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: