Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment.

  • Serena Dollive‎ et al.
  • PloS one‎
  • 2013‎

Antibiotic use in humans has been associated with outgrowth of fungi. Here we used a murine model to investigate the gut microbiome over 76 days of treatment with vancomycin, ampicillin, neomycin, and metronidazole and subsequent recovery. Mouse stool was studied as a surrogate for the microbiota of the lower gastrointestinal tract. The abundance of fungi and bacteria was measured using quantitative PCR, and the proportional composition of the communities quantified using 454/Roche pyrosequencing of rRNA gene tags. Prior to treatment, bacteria outnumbered fungi by >3 orders of magnitude. Upon antibiotic treatment, bacteria dropped in abundance >3 orders of magnitude, so that the predominant 16S sequences detected became transients derived from food. Upon cessation of treatment, bacterial communities mostly returned to their previous numbers and types after 8 weeks, though communities remained detectably different from untreated controls. Fungal communities varied substantially over time, even in the untreated controls. Separate cages within the same treatment group showed radical differences, but mice within a cage generally behaved similarly. Fungi increased ∼40-fold in abundance upon antibiotic treatment but declined back to their original abundance after cessation of treatment. At the last time point, Candida remained more abundant than prior to treatment. These data show that 1) gut fungal populations change radically during normal mouse husbandry, 2) fungi grow out in the gut upon suppression of bacterial communities with antibiotics, and 3) perturbations due to antibiotics persist long term in both the fungal and bacterial microbiota.


The asparagus genome sheds light on the origin and evolution of a young Y chromosome.

  • Alex Harkess‎ et al.
  • Nature communications‎
  • 2017‎

Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution.


Composition and expression of conserved microRNA genes in diploid cotton (Gossypium) species.

  • Lei Gong‎ et al.
  • Genome biology and evolution‎
  • 2013‎

MicroRNAs are ubiquitous in plant genomes but vary greatly in their abundance within and conservation among plant lineages. To gain insight into the evolutionary birth/death dynamics of microRNA families, we sequenced small RNA and 5'-end PARE libraries generated from two closely related species of Gossypium. Here, we demonstrate that 33 microRNA families, with similar copy numbers and average evolutionary rates, are conserved in the two congeneric cottons. Analysis of the presence/absence of these microRNA families in other land plants sheds light on their depth of phylogenetic origin and lineage-specific loss/gain. Conserved microRNA families in Gossypium exhibit a striking interspecific asymmetry in expression, potentially connected to relative proximity to neighboring transposable elements. A complex correlated expression pattern of microRNA target genes with their controlling microRNAs indicates that possible functional divergence of conserved microRNA families can also exist even within a single plant genus.


The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development.

  • Archana D Siddam‎ et al.
  • PLoS genetics‎
  • 2018‎

Opacification of the ocular lens, termed cataract, is a common cause of blindness. To become transparent, lens fiber cells undergo degradation of their organelles, including their nuclei, presenting a fundamental question: does signaling/transcription sufficiently explain differentiation of cells progressing toward compromised transcriptional potential? We report that a conserved RNA-binding protein Celf1 post-transcriptionally controls key genes to regulate lens fiber cell differentiation. Celf1-targeted knockout mice and celf1-knockdown zebrafish and Xenopus morphants have severe eye defects/cataract. Celf1 spatiotemporally down-regulates the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 by interacting with its 5' UTR and mediating translation inhibition. Celf1 deficiency causes ectopic up-regulation of p21Cip1. Further, Celf1 directly binds to the mRNA of the nuclease Dnase2b to maintain its high levels. Together these events are necessary for Cdk1-mediated lamin A/C phosphorylation to initiate nuclear envelope breakdown and DNA degradation in fiber cells. Moreover, Celf1 controls alternative splicing of the membrane-organization factor beta-spectrin and regulates F-actin-crosslinking factor Actn2 mRNA levels, thereby controlling fiber cell morphology. Thus, we illustrate new Celf1-regulated molecular mechanisms in lens development, suggesting that post-transcriptional regulatory RNA-binding proteins have evolved conserved functions to control vertebrate oculogenesis.


sPARTA: a parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets, including new miRNA target-identification software.

  • Atul Kakrana‎ et al.
  • Nucleic acids research‎
  • 2014‎

Parallel analysis of RNA ends (PARE) is a technique utilizing high-throughput sequencing to profile uncapped, mRNA cleavage or decay products on a genome-wide basis. Tools currently available to validate miRNA targets using PARE data employ only annotated genes, whereas important targets may be found in unannotated genomic regions. To handle such cases and to scale to the growing availability of PARE data and genomes, we developed a new tool, 'sPARTA' (small RNA-PARE target analyzer) that utilizes a built-in, plant-focused target prediction module (aka 'miRferno'). sPARTA not only exhibits an unprecedented gain in speed but also it shows greater predictive power by validating more targets, compared to a popular alternative. In addition, the novel 'seed-free' mode, optimized to find targets irrespective of complementarity in the seed-region, identifies novel intergenic targets. To fully capitalize on the novelty and strengths of sPARTA, we developed a web resource, 'comPARE', for plant miRNA target analysis; this facilitates the systematic identification and analysis of miRNA-target interactions across multiple species, integrated with visualization tools. This collation of high-throughput small RNA and PARE datasets from different genomes further facilitates re-evaluation of existing miRNA annotations, resulting in a 'cleaner' set of microRNAs.


Plant 24-nt reproductive phasiRNAs from intramolecular duplex mRNAs in diverse monocots.

  • Atul Kakrana‎ et al.
  • Genome research‎
  • 2018‎

In grasses, two pathways that generate diverse and numerous 21-nt (premeiotic) and 24-nt (meiotic) phased siRNAs are highly enriched in anthers, the male reproductive organs. These "phasiRNAs" are analogous to mammalian piRNAs, yet their functions and evolutionary origins remain largely unknown. The 24-nt meiotic phasiRNAs have only been described in grasses, wherein their biogenesis is dependent on a specialized Dicer (DCL5). To assess how evolution gave rise to this pathway, we examined reproductive phasiRNA pathways in nongrass monocots: garden asparagus, daylily, and lily. The common ancestors of these species diverged approximately 115-117 million years ago (MYA). We found that premeiotic 21-nt and meiotic 24-nt phasiRNAs were abundant in all three species and displayed spatial localization and temporal dynamics similar to grasses. The miR2275-triggered pathway was also present, yielding 24-nt reproductive phasiRNAs, and thus originated more than 117 MYA. In asparagus, unlike in grasses, these siRNAs are largely derived from inverted repeats (IRs); analyses in lily identified thousands of precursor loci, and many were also predicted to form foldback substrates for Dicer processing. Additionally, reproductive phasiRNAs were present in female reproductive organs and thus may function in both male and female germinal development. These data describe several distinct mechanisms of production for 24-nt meiotic phasiRNAs and provide new insights into the evolution of reproductive phasiRNA pathways in monocots.


iSyTE 2.0: a database for expression-based gene discovery in the eye.

  • Atul Kakrana‎ et al.
  • Nucleic acids research‎
  • 2018‎

Although successful in identifying new cataract-linked genes, the previous version of the database iSyTE (integrated Systems Tool for Eye gene discovery) was based on expression information on just three mouse lens stages and was functionally limited to visualization by only UCSC-Genome Browser tracks. To increase its efficacy, here we provide an enhanced iSyTE version 2.0 (URL: http://research.bioinformatics.udel.edu/iSyTE) based on well-curated, comprehensive genome-level lens expression data as a one-stop portal for the effective visualization and analysis of candidate genes in lens development and disease. iSyTE 2.0 includes all publicly available lens Affymetrix and Illumina microarray datasets representing a broad range of embryonic and postnatal stages from wild-type and specific gene-perturbation mouse mutants with eye defects. Further, we developed a new user-friendly web interface for direct access and cogent visualization of the curated expression data, which supports convenient searches and a range of downstream analyses. The utility of these new iSyTE 2.0 features is illustrated through examples of established genes associated with lens development and pathobiology, which serve as tutorials for its application by the end-user. iSyTE 2.0 will facilitate the prioritization of eye development and disease-linked candidate genes in studies involving transcriptomics or next-generation sequencing data, linkage analysis and GWAS approaches.


Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance.

  • Atul Kakrana‎ et al.
  • Frontiers in plant science‎
  • 2017‎

The root-knot nematode (RKN), Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi) has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS) promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.


The Msi Family of RNA-Binding Proteins Function Redundantly as Intestinal Oncoproteins.

  • Ning Li‎ et al.
  • Cell reports‎
  • 2015‎

Members of the Msi family of RNA-binding proteins have recently emerged as potent oncoproteins in a range of malignancies. MSI2 is highly expressed in hematopoietic cancers, where it is required for disease maintenance. In contrast to the hematopoietic system, colorectal cancers can express both Msi family members, MSI1 and MSI2. Here, we demonstrate that, in the intestinal epithelium, Msi1 and Msi2 have analogous oncogenic effects. Further, comparison of Msi1/2-induced gene expression programs and transcriptome-wide analyses of Msi1/2-RNA-binding targets reveal significant functional overlap, including induction of the PDK-Akt-mTORC1 axis. Ultimately, we demonstrate that concomitant loss of function of both MSI family members is sufficient to abrogate the growth of human colorectal cancer cells, and Msi gene deletion inhibits tumorigenesis in several mouse models of intestinal cancer. Our findings demonstrate that MSI1 and MSI2 act as functionally redundant oncoproteins required for the ontogeny of intestinal cancers.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: