Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Regenerative Therapy Prevents Heart Failure Progression in Dyssynchronous Nonischemic Narrow QRS Cardiomyopathy.

  • Satsuki Yamada‎ et al.
  • Journal of the American Heart Association‎
  • 2015‎

Cardiac resynchronization therapy using bi-ventricular pacing is proven effective in the management of heart failure (HF) with a wide QRS-complex. In the absence of QRS prolongation, however, device-based resynchronization is reported unsuitable. As an alternative, the present study tests a regenerative cell-based approach in the setting of narrow QRS-complex HF.


Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells.

  • Peter Strege‎ et al.
  • Channels (Austin, Tex.)‎
  • 2012‎

Na(V)1.5 is a mechanosensitive voltage-gated Na(+) channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na(+) current and delayed rectifier (I(Kr)) currents. Recently, ranolazine was also shown to be an inhibitor of Na(V)1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na(+) current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na(+) current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine.


Mechanical dyssynchrony precedes QRS widening in ATP-sensitive K⁺ channel-deficient dilated cardiomyopathy.

  • Satsuki Yamada‎ et al.
  • Journal of the American Heart Association‎
  • 2013‎

Contractile discordance exacerbates cardiac dysfunction, aggravating heart failure outcome. Dissecting the genesis of mechanical dyssynchrony would enable an early diagnosis before advanced disease.


Genomic chart guiding embryonic stem cell cardiopoiesis.

  • Randolph S Faustino‎ et al.
  • Genome biology‎
  • 2008‎

Embryonic stem cells possess a pluripotent transcriptional background with the developmental capacity for distinct cell fates. Simultaneous expression of genetic elements for multiple outcomes obscures cascades relevant to specific cell phenotypes. To map molecular patterns critical to cardiogenesis, we interrogated gene expression in stem cells undergoing guided differentiation, and defined a genomic paradigm responsible for confinement of pluripotency.


Cardiopoietic stem cell therapy restores infarction-altered cardiac proteome.

  • D Kent Arrell‎ et al.
  • NPJ Regenerative medicine‎
  • 2020‎

Cardiopoietic stem cells have reached advanced clinical testing for ischemic heart failure. To profile their molecular influence on recipient hearts, systems proteomics was here applied in a chronic model of infarction randomized with and without human cardiopoietic stem cell treatment. Multidimensional label-free tandem mass spectrometry resolved and quantified 3987 proteins constituting the cardiac proteome. Infarction altered 450 proteins, reduced to 283 by stem cell treatment. Notably, cell therapy non-stochastically reversed a majority of infarction-provoked changes, remediating 85% of disease-affected protein clusters. Pathway and network analysis decoded functional reorganization, distinguished by prioritization of vasculogenesis, cardiac development, organ regeneration, and differentiation. Subproteome restoration nullified adverse ischemic effects, validated by echo-/electro-cardiographic documentation of improved cardiac chamber size, reduced QT prolongation and augmented ejection fraction post-cell therapy. Collectively, cardiopoietic stem cell intervention transitioned infarcted hearts from a cardiomyopathic trajectory towards pre-disease. Systems proteomics thus offers utility to delineate and interpret complex molecular regenerative outcomes.


Ventricular remodeling in ischemic heart failure stratifies responders to stem cell therapy.

  • Satsuki Yamada‎ et al.
  • Stem cells translational medicine‎
  • 2020‎

Response to stem cell therapy in heart failure is heterogeneous, warranting a better understanding of outcome predictors. This study assessed left ventricular volume, a surrogate of disease severity, on cell therapy benefit. Small to large infarctions were induced in murine hearts to model moderate, advanced, and end-stage ischemic cardiomyopathy. At 1 month postinfarction, cardiomyopathic cohorts with comparable left ventricular enlargement and dysfunction were randomized 1:1 to those that either received sham treatment or epicardial delivery of cardiopoietic stem cells (CP). Progressive dilation and pump failure consistently developed in sham. In comparison, CP treatment produced significant benefit at 1 month post-therapy, albeit with an efficacy impacted by cardiomyopathic stage. Advanced ischemic cardiomyopathy was the most responsive to CP-mediated salvage, exhibiting both structural and functional restitution, with proteome deconvolution substantiating that cell therapy reversed infarction-induced remodeling of functional pathways. Moderate cardiomyopathy was less responsive to CP therapy, improving contractility but without reversing preexistent heart enlargement. In end-stage disease, CP therapy showed the least benefit. This proof-of-concept study thus demonstrates an optimal window, or "Goldilocks principle," of left ventricular enlargement for maximized stem cell-based cardiac repair. Disease severity grading, prior to cell therapy, should be considered to inform regenerative medicine interventions.


Secretome signature of cardiopoietic cells echoed in rescued infarcted heart proteome.

  • D Kent Arrell‎ et al.
  • Stem cells translational medicine‎
  • 2021‎

Stem cell paracrine activity is implicated in cardiac repair. Linkage between secretome functionality and therapeutic outcome was here interrogated by systems analytics of biobanked human cardiopoietic cells, a regenerative biologic in advanced clinical trials. Protein chip array identified 155 proteins differentially secreted by cardiopoietic cells with clinical benefit, expanded into a 520 node network, collectively revealing inherent vasculogenic properties along with cardiac and smooth muscle differentiation and development. Next generation RNA sequencing, refined by pathway analysis, pinpointed miR-146 dependent regulation upstream of the decoded secretome. Intracellular and extracellular integration unmasked commonality across cardio-vasculogenic processes. Mirroring the secretome pattern, infarcted hearts benefiting from cardiopoietic cell therapy restored the disease proteome engaging cardiovascular system functions. The cardiopoietic cell secretome thus confers a therapeutic molecular imprint on recipient hearts, with response informed by predictive systems profiling.


Sarcolemmal ATP-sensitive K(+) channels control energy expenditure determining body weight.

  • Alexey E Alekseev‎ et al.
  • Cell metabolism‎
  • 2010‎

Metabolic processes that regulate muscle energy use are major determinants of bodily energy balance. Here, we find that sarcolemmal ATP-sensitive K(+) (K(ATP)) channels, which couple membrane excitability with cellular metabolic pathways, set muscle energy expenditure under physiological stimuli. Disruption of K(ATP) channel function provoked, under conditions of unaltered locomotor activity and blood substrate availability, an extra energy cost of cardiac and skeletal muscle performance. Inefficient fuel metabolism in K(ATP) channel-deficient striated muscles reduced glycogen and fat body depots, promoting a lean phenotype. The propensity to lesser body weight imposed by K(ATP) channel deficit persisted under a high-fat diet, yet obesity restriction was achieved at the cost of compromised physical endurance. Thus, sarcolemmal K(ATP) channels govern muscle energy economy, and their downregulation in a tissue-specific manner could present an antiobesity strategy by rendering muscle increasingly thermogenic at rest and less fuel efficient during exercise.


Induced pluripotent stem cell intervention rescues ventricular wall motion disparity, achieving biological cardiac resynchronization post-infarction.

  • Satsuki Yamada‎ et al.
  • The Journal of physiology‎
  • 2013‎

Dyssynchronous myocardial motion aggravates cardiac pump function. Cardiac resynchronization using pacing devices is a standard-of-care in the management of heart failure. Post-infarction, however, scar tissue formation impedes the efficacy of device-based therapy. The present study tests a regenerative approach aimed at targeting the origin of abnormal motion to prevent dyssynchronous organ failure. Induced pluripotent stem (iPS) cells harbour a reparative potential, and were here bioengineered from somatic fibroblasts reprogrammed with the stemness factors OCT3/4, SOX2, KLF4, and c-MYC. In a murine infarction model, within 30 min of coronary ligation, iPS cells were delivered to mapped infarcted areas. Focal deformation and dysfunction underlying progressive heart failure was resolved prospectively using speckle-tracking imaging. Tracked at high temporal and spatial resolution, regional iPS cell transplantation restored, within 10 days post-infarction, the contractility of targeted infarcted foci and nullified conduction delay in adjacent non-infarcted regions. Local iPS cell therapy, but not delivery of parental fibroblasts or vehicle, prevented or normalized abnormal strain patterns correcting the decrease in peak strain, disparity of time-to-peak strain, and pathological systolic stretch. Focal benefit of iPS cell intervention translated into improved left ventricular conduction and contractility, reduced scar, and reversal of structural remodelling, protecting from organ decompensation. Thus, in ischaemic cardiomyopathy, targeted iPS cell transplantation synchronized failing ventricles, offering a regenerative strategy to achieve biological resynchronization.


Elimination of Purkinje Fibers by Electroporation Reduces Ventricular Fibrillation Vulnerability.

  • Christopher Livia‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Background The Purkinje network appears to play a pivotal role in the triggering as well as maintenance of ventricular fibrillation. Irreversible electroporation ( IRE ) using direct current has shown promise as a nonthermal ablation modality in the heart, but its ability to target and ablate the Purkinje tissue is undefined. Our aim was to investigate the potential for selective ablation of Purkinje/fascicular fibers using IRE . Methods and Results In an ex vivo Langendorff model of canine heart (n=8), direct current was delivered in a unipolar manner at various dosages from 750 to 2500 V, in 10 pulses with a 90-μs duration at a frequency of 1 Hz. The window of ventricular fibrillation vulnerability was assessed before and after delivery of electroporation energy using a shock on T-wave method. IRE consistently eradicated all Purkinje potentials at voltages between 750 and 2500 V (minimum field strength of 250-833 V/cm). The ventricular electrogram amplitude was only minimally reduced by ablation: 0.6±2.3 mV ( P=0.03). In 4 hearts after IRE delivery, ventricular fibrillation could not be reinduced. At baseline, the lower limit of vulnerability to ventricular fibrillation was 1.8±0.4 J, and the upper limit of vulnerability was 19.5±3.0 J. The window of vulnerability was 17.8±2.9 J. Delivery of electroporation energy significantly reduced the window of vulnerability to 5.7±2.9 J ( P=0.0003), with a postablation lower limit of vulnerability=7.3±2.63 J, and the upper limit of vulnerability=18.8±5.2 J. Conclusions Our study highlights that Purkinje tissue can be ablated with IRE without any evidence of underlying myocardial damage.


Human umbilical cord blood-derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload.

  • Saji Oommen‎ et al.
  • Stem cell research & therapy‎
  • 2015‎

Stem cell therapy has emerged as potential therapeutic strategy for damaged heart muscles. Umbilical cord blood (UCB) cells are the most prevalent stem cell source available, yet have not been fully tested in cardiac regeneration. Herein, studies were performed to evaluate the cardiovascular safety and beneficial effect of mononuclear cells (MNCs) isolated from human umbilical cord blood upon intramyocardial delivery in a murine model of right ventricle (RV) heart failure due to pressure overload.


Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design.

  • Jozef Bartunek‎ et al.
  • European journal of heart failure‎
  • 2016‎

Cardiopoiesis is a conditioning programme that aims to upgrade the cardioregenerative aptitude of patient-derived stem cells through lineage specification. Cardiopoietic stem cells tested initially for feasibility and safety exhibited signs of clinical benefit in patients with ischaemic heart failure (HF) warranting definitive evaluation. Accordingly, CHART-1 is designed as a large randomized, sham-controlled multicentre study aimed to validate cardiopoietic stem cell therapy.


Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan.

  • Darren J Baker‎ et al.
  • Nature cell biology‎
  • 2013‎

The BubR1 gene encodes for a mitotic regulator that ensures accurate segregation of chromosomes through its role in the mitotic checkpoint and the establishment of proper microtubule-kinetochore attachments. Germline mutations that reduce BubR1 abundance cause aneuploidy, shorten lifespan and induce premature ageing phenotypes and cancer in both humans and mice. A reduced BubR1 expression level is also a feature of chronological ageing, but whether this age-related decline has biological consequences is unknown. Using a transgenic approach in mice, we show that sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorigenesis, even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras. We find that BubR1 overabundance exerts its protective effect by correcting mitotic checkpoint impairment and microtubule-kinetochore attachment defects. Furthermore, sustained high-level expression of BubR1 extends lifespan and delays age-related deterioration and aneuploidy in several tissues. Collectively, these data uncover a generalized function for BubR1 in counteracting defects that cause whole-chromosome instability and suggest that modulating BubR1 provides a unique opportunity to extend healthy lifespan.


Brachyury engineers cardiac repair competent stem cells.

  • Mark Li‎ et al.
  • Stem cells translational medicine‎
  • 2021‎

To optimize the regenerative proficiency of stem cells, a cardiopoietic protein-based cocktail consisting of multiple growth factors has been developed and advanced into clinical trials for treatment of ischemic heart failure. Streamlining the inductors of cardiopoiesis would address the resource intensive nature of the current stem cell enhancement protocol. To this end, the microencapsulated-modified-mRNA (M3 RNA) technique was here applied to introduce early cardiogenic genes into human adipose-derived mesenchymal stem cells (AMSCs). A single mesodermal transcription factor, Brachyury, was sufficient to trigger high expression of cardiopoietic markers, Nkx2.5 and Mef2c. Engineered cardiopoietic stem cells (eCP) featured a transcriptome profile distinct from pre-engineered AMSCs. In vitro, eCP demonstrated protective antioxidant capacity with enhanced superoxide dismutase expression and activity; a vasculogenic secretome driving angiogenic tube formation; and macrophage polarizing immunomodulatory properties. In vivo, in a murine model of myocardial infarction, intramyocardial delivery of eCP (600 000 cells per heart) improved cardiac performance and protected against decompensated heart failure. Thus, heart repair competent stem cells, armed with antioxidant, vasculogenic, and immunomodulatory traits, are here engineered through a protein-independent single gene manipulation, expanding the available regenerative toolkit.


Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network.

  • Anca Chiriac‎ et al.
  • PloS one‎
  • 2010‎

Pluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output.


Cardiopoietic stem cell therapy in ischaemic heart failure: long-term clinical outcomes.

  • Jozef Bartunek‎ et al.
  • ESC heart failure‎
  • 2020‎

This study aims to explore long-term clinical outcomes of cardiopoiesis-guided stem cell therapy for ischaemic heart failure assessed in the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial.


Diastolic Pulmonary Gradient as a Predictor of Right Ventricular Failure After Left Ventricular Assist Device Implantation.

  • Hilmi Alnsasra‎ et al.
  • Journal of the American Heart Association‎
  • 2019‎

Background Diastolic pulmonary gradient (DPG) was proposed as a better marker of pulmonary vascular remodeling compared with pulmonary vascular resistance (PVR) and transpulmonary gradient (TPG). The prognostic significance of DPG in patients requiring a left ventricular assist device (LVAD) remains unclear. We sought to investigate whether pre-LVAD DPG is a predictor of survival or right ventricular (RV) failure post-LVAD. Methods and Results We retrospectively reviewed 268 patients who underwent right heart catheterization before LVAD implantation from 2007 to 2017 and had pulmonary hypertension because of left heart disease. Patients were dichotomized using DPG ≥7 mm Hg, PVR ≥3 mm Hg, or TPG ≥12 mm Hg. The associations between these parameters and all-cause mortality or RV failure post LVAD were assessed with Cox proportional hazards regression and Kaplan-Meier analyses. After a mean follow-up time of 35 months, elevated DPG was associated with increased risk of RV failure (hazard ratio [HR]: 3.30; P=0.004, for DPG ≥7 versus DPG <7), whereas elevated PVR (HR 1.85, P=0.13 for PVR ≥3 versus PVR <3) or TPG (HR 1.47, P=0.35, for TPG ≥12 versus TPG <12) were not associated with the development of RV failure. Elevated DPG was not associated with mortality risk (HR 1.16, P=0.54, for DPG ≥7 versus DPG <7), whereas elevated PVR, but not TPG, was associated with higher mortality risk (HR 1.55; P=0.026, for PVR ≥3 versus PVR <3). Conclusions Among patients with pulmonary hypertension because of left heart disease requiring LVAD support, elevated DPG was associated with RV failure but not survival, while elevated PVR predicted mortality post LVAD implantation.


TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo.

  • Ao Shi‎ et al.
  • Theranostics‎
  • 2021‎

Rationale: With over seven million infections and $25 billion treatment cost, chronic ischemic wounds are one of the most serious complications in the United States. The controlled release of bioactive factor enriched exosome from finbrin gel was a promising strategy to promote wound healing. Methods: To address this unsolved problem, we developed clinical-grade platelets exosome product (PEP), which was incorporate with injectable surgical fibrin sealant (TISSEEL), to promote chronic wound healing and complete skin regeneration. The PEP characterization stimulated cellular activities and in vivo rabbit ischemic wound healing capacity of TISSEEL-PEP were performed and analyzed. Results: PEP, enriched with transforming growth factor beta (TGF-β), possessed exosomal characteristics including exosome size, morphology, and typical markers including CD63, CD9, and ALG-2-interacting protein X (Alix). In vitro, PEP significantly promoted cell proliferation, migration, tube formation, as well as skin organoid formation. Topical treatment of ischemic wounds with TISSEEL-PEP promoted full-thickness healing with the reacquisition of hair follicles and sebaceous glands. Superior to untreated and TISSEEL-only treated controls, TISSEEL-PEP drove cutaneous healing associated with collagen synthesis and restoration of dermal architecture. Furthermore, PEP promoted epithelial and vascular cell activity enhancing angiogenesis to restore blood flow and mature skin function. Transcriptome deconvolution of TISSEEL-PEP versus TISSEEL-only treated wounds prioritized regenerative pathways encompassing neovascularization, matrix remodeling and tissue growth. Conclusion: This room-temperature stable, lyophilized exosome product is thus capable of delivering a bioactive transforming growth factor beta to drive regenerative events.


Adenylate kinase AK2 isoform integral in embryo and adult heart homeostasis.

  • Song Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Adenylate kinase2 (AK2) catalyzes trans-compartmental nucleotide exchange, but the functional implications of this mitochondrial intermembrane isoform is only partially understood. Here, transgenic AK2-/- null homozygosity was lethal early in embryo, indicating a mandatory role for intact AK2 in utero development. In the adult, conditional organ-specific ablation of AK2 precipitated abrupt heart failure with Krebs cycle and glycolytic metabolite buildup, suggesting a vital contribution to energy demanding cardiac performance. Depressed pump function recovered to pre-deletion levels overtime, suggestive of an adaptive response. Compensatory upregulation of phosphotransferase AK1, AK3, AK4 isozymes, creatine kinase isoforms, and hexokinase, along with remodeling of cell cycle/growth genes and mitochondrial ultrastructure supported organ rescue. Taken together, the requirement of AK2 in early embryonic stages, and the immediate collapse of heart performance in the AK2-deficient postnatal state underscore a primordial function of the AK2 isoform. Unsalvageable in embryo, loss of AK2 in the adult heart was recoverable, underscoring an AK2-integrated bioenergetics system with innate plasticity to maintain homeostasis on demand.


Screening for regenerative therapy responders in heart failure.

  • Satsuki Yamada‎ et al.
  • Biomarkers in medicine‎
  • 2021‎

Risk of outcome variability challenges therapeutic innovation. Selection of the most suitable candidates is predicated on reliable response indicators. Especially for emergent regenerative biotherapies, determinants separating success from failure in achieving disease rescue remain largely unknown. Accordingly, (pre)clinical development programs have placed increased emphasis on the multi-dimensional decoding of repair capacity and disease resolution, attributes defining responsiveness. To attain regenerative goals for each individual, phenotype-based patient selection is poised for an upgrade guided by new insights into disease biology, translated into refined surveillance of response regulators and deep learning-amplified clinical decision support.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: