Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Regenerative Therapy Prevents Heart Failure Progression in Dyssynchronous Nonischemic Narrow QRS Cardiomyopathy.

  • Satsuki Yamada‎ et al.
  • Journal of the American Heart Association‎
  • 2015‎

Cardiac resynchronization therapy using bi-ventricular pacing is proven effective in the management of heart failure (HF) with a wide QRS-complex. In the absence of QRS prolongation, however, device-based resynchronization is reported unsuitable. As an alternative, the present study tests a regenerative cell-based approach in the setting of narrow QRS-complex HF.


Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells.

  • Peter Strege‎ et al.
  • Channels (Austin, Tex.)‎
  • 2012‎

Na(V)1.5 is a mechanosensitive voltage-gated Na(+) channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na(+) current and delayed rectifier (I(Kr)) currents. Recently, ranolazine was also shown to be an inhibitor of Na(V)1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na(+) current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na(+) current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine.


Mechanical dyssynchrony precedes QRS widening in ATP-sensitive K⁺ channel-deficient dilated cardiomyopathy.

  • Satsuki Yamada‎ et al.
  • Journal of the American Heart Association‎
  • 2013‎

Contractile discordance exacerbates cardiac dysfunction, aggravating heart failure outcome. Dissecting the genesis of mechanical dyssynchrony would enable an early diagnosis before advanced disease.


Genomic chart guiding embryonic stem cell cardiopoiesis.

  • Randolph S Faustino‎ et al.
  • Genome biology‎
  • 2008‎

Embryonic stem cells possess a pluripotent transcriptional background with the developmental capacity for distinct cell fates. Simultaneous expression of genetic elements for multiple outcomes obscures cascades relevant to specific cell phenotypes. To map molecular patterns critical to cardiogenesis, we interrogated gene expression in stem cells undergoing guided differentiation, and defined a genomic paradigm responsible for confinement of pluripotency.


Cardiopoietic stem cell therapy restores infarction-altered cardiac proteome.

  • D Kent Arrell‎ et al.
  • NPJ Regenerative medicine‎
  • 2020‎

Cardiopoietic stem cells have reached advanced clinical testing for ischemic heart failure. To profile their molecular influence on recipient hearts, systems proteomics was here applied in a chronic model of infarction randomized with and without human cardiopoietic stem cell treatment. Multidimensional label-free tandem mass spectrometry resolved and quantified 3987 proteins constituting the cardiac proteome. Infarction altered 450 proteins, reduced to 283 by stem cell treatment. Notably, cell therapy non-stochastically reversed a majority of infarction-provoked changes, remediating 85% of disease-affected protein clusters. Pathway and network analysis decoded functional reorganization, distinguished by prioritization of vasculogenesis, cardiac development, organ regeneration, and differentiation. Subproteome restoration nullified adverse ischemic effects, validated by echo-/electro-cardiographic documentation of improved cardiac chamber size, reduced QT prolongation and augmented ejection fraction post-cell therapy. Collectively, cardiopoietic stem cell intervention transitioned infarcted hearts from a cardiomyopathic trajectory towards pre-disease. Systems proteomics thus offers utility to delineate and interpret complex molecular regenerative outcomes.


Ventricular remodeling in ischemic heart failure stratifies responders to stem cell therapy.

  • Satsuki Yamada‎ et al.
  • Stem cells translational medicine‎
  • 2020‎

Response to stem cell therapy in heart failure is heterogeneous, warranting a better understanding of outcome predictors. This study assessed left ventricular volume, a surrogate of disease severity, on cell therapy benefit. Small to large infarctions were induced in murine hearts to model moderate, advanced, and end-stage ischemic cardiomyopathy. At 1 month postinfarction, cardiomyopathic cohorts with comparable left ventricular enlargement and dysfunction were randomized 1:1 to those that either received sham treatment or epicardial delivery of cardiopoietic stem cells (CP). Progressive dilation and pump failure consistently developed in sham. In comparison, CP treatment produced significant benefit at 1 month post-therapy, albeit with an efficacy impacted by cardiomyopathic stage. Advanced ischemic cardiomyopathy was the most responsive to CP-mediated salvage, exhibiting both structural and functional restitution, with proteome deconvolution substantiating that cell therapy reversed infarction-induced remodeling of functional pathways. Moderate cardiomyopathy was less responsive to CP therapy, improving contractility but without reversing preexistent heart enlargement. In end-stage disease, CP therapy showed the least benefit. This proof-of-concept study thus demonstrates an optimal window, or "Goldilocks principle," of left ventricular enlargement for maximized stem cell-based cardiac repair. Disease severity grading, prior to cell therapy, should be considered to inform regenerative medicine interventions.


Microvascular Dysfunction in Patients With Type II Diabetes Mellitus: Invasive Assessment of Absolute Coronary Blood Flow and Microvascular Resistance Reserve.

  • Emanuele Gallinoro‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

Background: Coronary microvascular dysfunction (CMD) is an early feature of diabetic cardiomyopathy, which usually precedes the onset of diastolic and systolic dysfunction. Continuous intracoronary thermodilution allows an accurate and reproducible assessment of absolute coronary blood flow and microvascular resistance thus allowing the evaluation of coronary flow reserve (CFR) and Microvascular Resistance Reserve (MRR), a novel index specific for microvascular function, which is independent from the myocardial mass. In the present study we compared absolute coronary flow and resistance, CFR and MRR assessed by continuous intracoronary thermodilution in diabetic vs. non-diabetic patients. Left atrial reservoir strain (LASr), an early marker of diastolic dysfunction was compared between the two groups. Methods: In this observational retrospective study, 108 patients with suspected angina and non-obstructive coronary artery disease (NOCAD) consecutively undergoing elective coronary angiography (CAG) from September 2018 to June 2021 were enrolled. The invasive functional assessment of microvascular function was performed in the left anterior descending artery (LAD) with intracoronary continuous thermodilution. Patients were classified according to the presence of DM. Absolute resting and hyperemic coronary blood flow (in mL/min) and resistance (in WU) were compared between the two cohorts. FFR was measured to assess coronary epicardial lesions, while CFR and MRR were calculated to assess microvascular function. LAS, assessed by speckle tracking echocardiography, was used to detect early myocardial structural changes potentially associated with microvascular dysfunction. Results: The median FFR value was 0.83 [0.79-0.87] without any significant difference between the two groups. Absolute resting and hyperemic flow in the left anterior descending coronary were similar between diabetic and non-diabetic patients. Similarly, resting and hyperemic resistances did not change significantly between the two groups. In the DM cohort the CFR and MRR were significantly lower compared to the control group (CFR = 2.38 ± 0.61 and 2.88 ± 0.82; MRR = 2.79 ± 0.87 and 3.48 ± 1.02 for diabetic and non-diabetic patients respectively, [p < 0.05 for both]). Likewise, diabetic patients had a significantly lower reservoir, contractile and conductive LAS (all p < 0.05). Conclusions: Compared with non-diabetic patients, CFR and MRR were lower in patients with DM and non-obstructive epicardial coronary arteries, while both resting and hyperemic coronary flow and resistance were similar. LASr was lower in diabetic patients, confirming the presence of a subclinical diastolic dysfunction associated to the microcirculatory impairment. Continuous intracoronary thermodilution-derived indexes provide a reliable and operator-independent assessment of coronary macro- and microvasculature and might potentially facilitate widespread clinical adoption of invasive physiologic assessment of suspected microvascular disease.


International Observational Analysis of Evolution and Outcomes of Chronic Stable Angina: The Multinational CLARIFY Study.

  • Jules Mesnier‎ et al.
  • Circulation‎
  • 2021‎

Although angina is common in patients with stable coronary artery disease, limited data are available on its prevalence, natural evolution, and outcomes in the era of effective cardiovascular drugs and widespread use of coronary revascularization.


Simplified Assessment of the Index of Microvascular Resistance.

  • Monika Kodeboina‎ et al.
  • Journal of interventional cardiology‎
  • 2021‎

To validate a simplified invasive method for the calculation of the index of microvascular resistance (IMR).


Secretome signature of cardiopoietic cells echoed in rescued infarcted heart proteome.

  • D Kent Arrell‎ et al.
  • Stem cells translational medicine‎
  • 2021‎

Stem cell paracrine activity is implicated in cardiac repair. Linkage between secretome functionality and therapeutic outcome was here interrogated by systems analytics of biobanked human cardiopoietic cells, a regenerative biologic in advanced clinical trials. Protein chip array identified 155 proteins differentially secreted by cardiopoietic cells with clinical benefit, expanded into a 520 node network, collectively revealing inherent vasculogenic properties along with cardiac and smooth muscle differentiation and development. Next generation RNA sequencing, refined by pathway analysis, pinpointed miR-146 dependent regulation upstream of the decoded secretome. Intracellular and extracellular integration unmasked commonality across cardio-vasculogenic processes. Mirroring the secretome pattern, infarcted hearts benefiting from cardiopoietic cell therapy restored the disease proteome engaging cardiovascular system functions. The cardiopoietic cell secretome thus confers a therapeutic molecular imprint on recipient hearts, with response informed by predictive systems profiling.


Elimination of Purkinje Fibers by Electroporation Reduces Ventricular Fibrillation Vulnerability.

  • Christopher Livia‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Background The Purkinje network appears to play a pivotal role in the triggering as well as maintenance of ventricular fibrillation. Irreversible electroporation ( IRE ) using direct current has shown promise as a nonthermal ablation modality in the heart, but its ability to target and ablate the Purkinje tissue is undefined. Our aim was to investigate the potential for selective ablation of Purkinje/fascicular fibers using IRE . Methods and Results In an ex vivo Langendorff model of canine heart (n=8), direct current was delivered in a unipolar manner at various dosages from 750 to 2500 V, in 10 pulses with a 90-μs duration at a frequency of 1 Hz. The window of ventricular fibrillation vulnerability was assessed before and after delivery of electroporation energy using a shock on T-wave method. IRE consistently eradicated all Purkinje potentials at voltages between 750 and 2500 V (minimum field strength of 250-833 V/cm). The ventricular electrogram amplitude was only minimally reduced by ablation: 0.6±2.3 mV ( P=0.03). In 4 hearts after IRE delivery, ventricular fibrillation could not be reinduced. At baseline, the lower limit of vulnerability to ventricular fibrillation was 1.8±0.4 J, and the upper limit of vulnerability was 19.5±3.0 J. The window of vulnerability was 17.8±2.9 J. Delivery of electroporation energy significantly reduced the window of vulnerability to 5.7±2.9 J ( P=0.0003), with a postablation lower limit of vulnerability=7.3±2.63 J, and the upper limit of vulnerability=18.8±5.2 J. Conclusions Our study highlights that Purkinje tissue can be ablated with IRE without any evidence of underlying myocardial damage.


Vessel Fractional Flow Reserve and Graft Vasculopathy in Heart Transplant Recipients.

  • Sakura Nagumo‎ et al.
  • Journal of interventional cardiology‎
  • 2020‎

Cardiac allograft vasculopathy (CAV) remains the Achilles' heel of long-term survival after heart transplantation (HTx). The severity and extent of CAV is graded with conventional coronary angiography (COR) which has several limitations. Recently, vessel fractional flow reserve (vFFR) derived from COR has emerged as a diagnostic computational tool to quantify the functional severity of coronary artery disease.


Predicted impact of atrial flow regulator on survival in heart failure with reduced and preserved ejection fraction.

  • Lucas Lauder‎ et al.
  • ESC heart failure‎
  • 2023‎

We aim to assess the theoretical impact of the atrial flow regulator (AFR) on survival in heart failure.


Use of risk scores to identify lower and higher risk subsets among COMPASS-eligible patients with chronic coronary syndromes. Insights from the CLARIFY registry.

  • Arthur Darmon‎ et al.
  • Clinical cardiology‎
  • 2021‎

The COMPASS trial showed a reduction of ischemic events with low-dose rivaroxaban and aspirin in chronic coronary syndromes (CCS) compared with aspirin alone, at the expense of increased bleeding.


Abbreviated Antiplatelet Therapy in Patients at High Bleeding Risk With or Without Oral Anticoagulant Therapy After Coronary Stenting: An Open-Label, Randomized, Controlled Trial.

  • Pieter C Smits‎ et al.
  • Circulation‎
  • 2021‎

The optimal duration of antiplatelet therapy (APT) in patients at high bleeding risk with or without oral anticoagulation (OAC) after coronary stenting remains unclear.


Vorapaxar in patients with diabetes mellitus and previous myocardial infarction: findings from the thrombin receptor antagonist in secondary prevention of atherothrombotic ischemic events-TIMI 50 trial.

  • Matthew A Cavender‎ et al.
  • Circulation‎
  • 2015‎

Vorapaxar reduces cardiovascular death, myocardial infarction (MI), or stroke in patients with previous MI while increasing bleeding. Patients with diabetes mellitus (DM) are at high risk of recurrent thrombotic events despite standard therapy and may derive particular benefit from antithrombotic therapies. The Thrombin Receptor Antagonist in Secondary Prevention of Atherothrombotic Ischemic Events-TIMI 50 trial was a randomized, double-blind, placebo-controlled trial of vorapaxar in patients with stable atherosclerosis.


Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan.

  • Darren J Baker‎ et al.
  • Nature cell biology‎
  • 2013‎

The BubR1 gene encodes for a mitotic regulator that ensures accurate segregation of chromosomes through its role in the mitotic checkpoint and the establishment of proper microtubule-kinetochore attachments. Germline mutations that reduce BubR1 abundance cause aneuploidy, shorten lifespan and induce premature ageing phenotypes and cancer in both humans and mice. A reduced BubR1 expression level is also a feature of chronological ageing, but whether this age-related decline has biological consequences is unknown. Using a transgenic approach in mice, we show that sustained high-level expression of BubR1 preserves genomic integrity and reduces tumorigenesis, even in the presence of genetic alterations that strongly promote aneuplodization and cancer, such as oncogenic Ras. We find that BubR1 overabundance exerts its protective effect by correcting mitotic checkpoint impairment and microtubule-kinetochore attachment defects. Furthermore, sustained high-level expression of BubR1 extends lifespan and delays age-related deterioration and aneuploidy in several tissues. Collectively, these data uncover a generalized function for BubR1 in counteracting defects that cause whole-chromosome instability and suggest that modulating BubR1 provides a unique opportunity to extend healthy lifespan.


Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design.

  • Jozef Bartunek‎ et al.
  • European journal of heart failure‎
  • 2016‎

Cardiopoiesis is a conditioning programme that aims to upgrade the cardioregenerative aptitude of patient-derived stem cells through lineage specification. Cardiopoietic stem cells tested initially for feasibility and safety exhibited signs of clinical benefit in patients with ischaemic heart failure (HF) warranting definitive evaluation. Accordingly, CHART-1 is designed as a large randomized, sham-controlled multicentre study aimed to validate cardiopoietic stem cell therapy.


Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy contribute to adverse LV remodeling.

  • Sara Vandenwijngaert‎ et al.
  • PloS one‎
  • 2013‎

The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC).


Brachyury engineers cardiac repair competent stem cells.

  • Mark Li‎ et al.
  • Stem cells translational medicine‎
  • 2021‎

To optimize the regenerative proficiency of stem cells, a cardiopoietic protein-based cocktail consisting of multiple growth factors has been developed and advanced into clinical trials for treatment of ischemic heart failure. Streamlining the inductors of cardiopoiesis would address the resource intensive nature of the current stem cell enhancement protocol. To this end, the microencapsulated-modified-mRNA (M3 RNA) technique was here applied to introduce early cardiogenic genes into human adipose-derived mesenchymal stem cells (AMSCs). A single mesodermal transcription factor, Brachyury, was sufficient to trigger high expression of cardiopoietic markers, Nkx2.5 and Mef2c. Engineered cardiopoietic stem cells (eCP) featured a transcriptome profile distinct from pre-engineered AMSCs. In vitro, eCP demonstrated protective antioxidant capacity with enhanced superoxide dismutase expression and activity; a vasculogenic secretome driving angiogenic tube formation; and macrophage polarizing immunomodulatory properties. In vivo, in a murine model of myocardial infarction, intramyocardial delivery of eCP (600 000 cells per heart) improved cardiac performance and protected against decompensated heart failure. Thus, heart repair competent stem cells, armed with antioxidant, vasculogenic, and immunomodulatory traits, are here engineered through a protein-independent single gene manipulation, expanding the available regenerative toolkit.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: