Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 40 papers

The AtXTH28 gene, a xyloglucan endotransglucosylase/hydrolase, is involved in automatic self-pollination in Arabidopsis thaliana.

  • Kasumi Kurasawa‎ et al.
  • Plant & cell physiology‎
  • 2009‎

Successful automatic self-pollination in flowering plants is dependent on the correct development of reproductive organs. In the stamen, the appropriate growth of the filament, which largely depends on the mechanical properties of the cell wall, is required to position the anther correctly close to the stigma at the pollination stage. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a family of enzymes that mediate the construction and restructuring of xyloglucan cross-links, thereby controlling the extensibility or mechanical properties of the cell wall in a wide variety of plant tissues. Our reverse genetic analysis has revealed that a loss-of-function mutation of an Arabidopsis XTH family gene, AtXTH28, led to a decrease in capability for self-pollination, probably due to inhibition of stamen filament growth. Our results also suggest that the role of AtXTH28 in the development of the stamen is not functionally redundant with its closest paralog, AtXTH27. Thus, our finding indicates that AtXTH28 is specifically involved in the growth of stamen filaments, and is required for successful automatic self-pollination in certain flowers in Arabidopsis thaliana.


Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice.

  • Xian Jun Song‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Grain weight is an important crop yield component; however, its underlying regulatory mechanisms are largely unknown. Here, we identify a grain-weight quantitative trait locus (QTL) encoding a new-type GNAT-like protein that harbors intrinsic histone acetyltransferase activity (OsglHAT1). Our genetic and molecular evidences pinpointed the QTL-OsglHAT1's allelic variations to a 1.2-kb region upstream of the gene body, which is consistent with its function as a positive regulator of the traits. Elevated OsglHAT1 expression enhances grain weight and yield by enlarging spikelet hulls via increasing cell number and accelerating grain filling, and increases global acetylation levels of histone H4. OsglHAT1 localizes to the nucleus, where it likely functions through the regulation of transcription. Despite its positive agronomical effects on grain weight, yield, and plant biomass, the rare allele elevating OsglHAT1 expression has so far escaped human selection. Our findings reveal the first example, to our knowledge, of a QTL for a yield component trait being due to a chromatin modifier that has the potential to improve crop high-yield breeding.


Two novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage.

  • Keisuke Nagai‎ et al.
  • Breeding science‎
  • 2012‎

Deepwater rice possesses internode elongation ability to avoid drowning under deepwater conditions. Previous studies identified three QTLs regulating internode elongation ability on chromosomes 1, 3 and 12 using different populations. However, these QTLs only induce internode elongation in response to deepwater conditions from the 7-leaf stage and not during the early leaf stage. In this study, we detected two novel QTLs, qTIL2 and qTIL4 regulating deepwater response at the early leaf stage using an F(2) population derived from the cross between NIL1-3-12 carrying the three QTLs regulating deepwater response in T65 (O. sativa ssp. japonica) genetic background and C9285 (O. sativa ssp. indica, deepwater rice). Plants of the BC(2)F(2) population derived from NIL1-3-12/C9285 and the RILs of T65/Bhadua (O. sativa ssp. indica, deepwater rice) possessing these QTLs as well as the three QTLs previously identified also showed internode elongation during the early leaf stage. These results indicate that qTIL2 and qTIL4 regulate early internode elongation and function in coordination with the three major QTLs under deepwater conditions. The results presented here would not only help define the mechanism of deepwater response in rice but also contribute in the breeding of deepwater tolerant rice that is adapted to various water depths.


Genetic basis of multiple resistance to the brown planthopper (Nilaparvata lugens Stål) and the green rice leafhopper (Nephotettix cincticeps Uhler) in the rice cultivar 'ASD7' (Oryza sativa L. ssp. indica).

  • Tan Van Mai‎ et al.
  • Breeding science‎
  • 2015‎

The rice cultivar ASD7 (Oryza sativa L. ssp. indica) is resistant to the brown planthopper (BPH; Nilaparvata lugens Stål) and the green leafhopper (Nephotettix virescens Distant). Here, we analyzed multiple genetic resistance to BPH and the green rice leafhopper (GRH; Nephotettix cincticeps Uhler). Using two independent F2 populations derived from a cross between ASD7 and Taichung 65 (Oryza sativa ssp. japonica), we detected two QTLs (qBPH6 and qBPH12) for resistance to BPH and one QTL (qGRH5) for resistance to GRH. Linkage analysis in BC2F3 populations revealed that qBPH12 controlled resistance to BPH and co-segregated with SSR markers RM28466 and RM7376 in plants homozygous for the ASD7 allele at qBPH6. Plants homozygous for the ASD7 alleles at both QTLs showed a much faster antibiosis response to BPH than plants homozygous at only one of these QTLs. It revealed that epistatic interaction between qBPH6 and qBPH12 is the basis of resistance to BPH in ASD7. In addition, qGRH5 controlled resistance to GRH and co-segregated with SSR markers RM6082 and RM3381. qGRH5 is identical to GRH1. Thus, we clarified the genetic basis of multiple resistance of ASD7 to BPH and GRH.


Convergent Loss of Awn in Two Cultivated Rice Species Oryza sativa and Oryza glaberrima Is Caused by Mutations in Different Loci.

  • Tomoyuki Furuta‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

A long awn is one of the distinct morphological features of wild rice species. This organ is thought to aid in seed dispersal and prevent predation by animals. Most cultivated varieties of Oryza sativa and Oryza glaberrima, however, have lost the ability to form long awns. The causal genetic factors responsible for the loss of awn in these two rice species remain largely unknown. Here, we evaluated three sets of chromosome segment substitution lines (CSSLs) in a common O. sativa genetic background (cv. Koshihikari) that harbor genomic fragments from Oryza nivara, Oryza rufipogon, and Oryza glaberrima donors. Phenotypic analyses of these libraries revealed the existence of three genes, Regulator of Awn Elongation 1 (RAE1), RAE2, and RAE3, involved in the loss of long awns in cultivated rice. Donor segments at two of these genes, RAE1 and RAE2, induced long awn formation in the CSSLs whereas an O. sativa segment at RAE3 induced long awn formation in O. glaberrima. These results suggest that the two cultivated rice species, O. sativa and O. glaberrima, have taken independent paths to become awnless.


Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice.

  • Giao Ngoc Nguyen‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2017‎

Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1) on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras ) and the DGS2 allele from O. sativa (DGS2-T65s ) were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP) III subunit C4 (RPC4). RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.


A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs.

  • Satoshi Naramoto‎ et al.
  • PLoS biology‎
  • 2019‎

Land plant shoot structures evolved a diversity of lateral organs as morphological adaptations to the terrestrial environment, with lateral organs arising independently in different lineages. Vascular plants and bryophytes (basally diverging land plants) develop lateral organs from meristems of sporophytes and gametophytes, respectively. Understanding the mechanisms of lateral organ development among divergent plant lineages is crucial for understanding the evolutionary process of morphological diversification of land plants. However, our current knowledge of lateral organ differentiation mechanisms comes almost entirely from studies of seed plants, and thus, it remains unclear how these lateral structures evolved and whether common regulatory mechanisms control the development of analogous lateral organs. Here, we performed a mutant screen in the liverwort Marchantia polymorpha, a bryophyte, which produces gametophyte axes with nonphotosynthetic scalelike lateral organs. We found that an Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and Oryza G1 (ALOG) family protein, named M. polymorpha LATERAL ORGAN SUPRESSOR 1 (MpLOS1), regulates meristem maintenance and lateral organ development in Marchantia. A mutation in MpLOS1, preferentially expressed in lateral organs, induces lateral organs with misspecified identity and increased cell number and, furthermore, causes defects in apical meristem maintenance. Remarkably, MpLOS1 expression rescued the elongated spikelet phenotype of a MpLOS1 homolog in rice. This suggests that ALOG genes regulate the development of lateral organs in both gametophyte and sporophyte shoots by repressing cell divisions. We propose that the recruitment of ALOG-mediated growth repression was in part responsible for the convergent evolution of independently evolved lateral organs among highly divergent plant lineages, contributing to the morphological diversification of land plants.


Domain Unknown Function DUF1668-Containing Genes in Multiple Lineages Are Responsible for F1 Pollen Sterility in Rice.

  • Mitsukazu Sakata‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Postzygotic reproductive isolation maintains species integrity and uniformity and contributes to speciation by restricting the free gene flow between divergent species. In this study we identify causal genes of two Mendelian factors S22A and S22B on rice chromosome 2 inducing F1 pollen sterility in hybrids between Oryza sativa japonica-type cultivar Taichung 65 (T65) and a wild relative of rice species Oryza glumaepatula. The causal gene of S22B in T65 encodes a protein containing DUF1668 and gametophytically expressed in the anthers, designated S22B_j. The O. glumaepatula allele S22B-g, allelic to S22B_j, possesses three non-synonymous substitutions and a 2-bp deletion, leading to a frameshifted translation at the S22B C-terminal region. Transcription level of S22B-j and/or S22B_g did not solely determine the fertility of pollen grains by genotypes at S22B. Western blotting of S22B found that one major band with approximately 46 kDa appeared only at the mature stage and was reduced on semi-sterile heterozygotes at S22B, implying that the 46 kDa band may associated in hybrid sterility. In addition, causal genes of S22A in T65 were found to be S22A_j1 and S22A_j3 encoding DUF1668-containing protein. The allele of a wild rice species Oryza meridionalis Ng at S22B, designated S22B_m, is a loss-of-function allele probably due to large deletion of the gene lacking DUF1668 domain and evolved from the different lineage of O. glumaepatula. Phylogenetic analysis of DUF1668 suggested that many gene duplications occurred before the divergence of current crops in Poaceae, and loss-of-function mutations of DUF1668-containing genes represent the candidate causal genetic events contributing to hybrid incompatibilities. The duplicated DUF1668-domain gene may provide genetic potential to induce hybrid incompatibility by consequent mutations after divergence.


Regulator of Awn Elongation 3, an E3 ubiquitin ligase, is responsible for loss of awns during African rice domestication.

  • Kanako Bessho-Uehara‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Two species of rice have been independently domesticated from different ancestral wild species in Asia and Africa. Comparison of mutations that underlie phenotypic and physiological alterations associated with domestication traits in these species gives insights into the domestication history of rice in both regions. Asian cultivated rice, Oryza sativa, and African cultivated rice, Oryza glaberrima, have been modified and improved for common traits beneficial for humans, including erect plant architecture, nonshattering seeds, nonpigmented pericarp, and lack of awns. Independent mutations in orthologous genes associated with these traits have been documented in the two cultivated species. Contrary to this prevailing model, selection for awnlessness targeted different genes in O. sativa and O. glaberrima. We identify Regulator of Awn Elongation 3 (RAE3) a gene that encodes an E3 ubiquitin ligase and is responsible for the awnless phenotype only in O. glaberrima. A 48-bp deletion may disrupt the substrate recognition domain in RAE3 and diminish awn elongation. Sequencing analysis demonstrated low nucleotide diversity in a ~600-kb region around the derived rae3 allele on chromosome 6 in O. glaberrima compared with its wild progenitor. Identification of RAE3 sheds light on the molecular mechanism underlying awn development and provides an example of how selection on different genes can confer the same domestication phenotype in Asian and African rice.


Environmental pH signals the release of monosaccharides from cell wall in coral symbiotic alga.

  • Yuu Ishii‎ et al.
  • eLife‎
  • 2023‎

Reef-building corals thrive in oligotrophic environments due to their possession of endosymbiotic algae. Confined to the low pH interior of the symbiosome within the cell, the algal symbiont provides the coral host with photosynthetically fixed carbon. However, it remains unknown how carbon is released from the algal symbiont for uptake by the host. Here we show, using cultured symbiotic dinoflagellate, Breviolum sp., that decreases in pH directly accelerates the release of monosaccharides, that is, glucose and galactose, into the ambient environment. Under low pH conditions, the cell surface structures were deformed and genes related to cellulase were significantly upregulated in Breviolum. Importantly, the release of monosaccharides was suppressed by the cellulase inhibitor, glucopyranoside, linking the release of carbon to degradation of the agal cell wall. Our results suggest that the low pH signals the cellulase-mediated release of monosaccharides from the algal cell wall as an environmental response in coral reef ecosystems.


Multiple and independent origins of short seeded alleles of GS3 in rice.

  • Noriko Takano-Kai‎ et al.
  • Breeding science‎
  • 2013‎

GRAIN SIZE 3 (GS3) is a cloned gene that is related to seed length. Here we report the discovery of new deletion alleles at the GS3 locus, each of which confer short seed. We selected ten short seeded cultivars from a collection of 282 diverse cultivars. Sequence analysis across the GS3 gene in these ten cultivars identified three novel alleles and a known allele that contain several independent deletion(s) in the fifth exon of GS. These independent deletion variants each resulted in a frameshift mutation that caused a premature stop codon, and they were functionally similar to one another. Each coded for a truncated gene product that behaved as an incomplete dominant allele and conferred a short seeded phenotype. Haplotype analysis of these sequence variants indicated that two of the variants were of japonica origin, and two were from indica. Transformation experiments demonstrated that one of the deletion alleles of GS3 decrease the cell number in the upper epidermis of the glume, resulting in a significant reduction in seed length. The multiple and independent origins of these short seeded alleles indicate that farmers and early breeders imposed artificial selection favoring short seeds.


Two Tightly Linked Genes at the hsa1 Locus Cause Both F1 and F2 Hybrid Sterility in Rice.

  • Takahiko Kubo‎ et al.
  • Molecular plant‎
  • 2016‎

Molecular mechanisms of hybrid breakdown associated with sterility (F2 sterility) are poorly understood as compared with those of F1 hybrid sterility. Previously, we characterized three unlinked epistatic loci, hybrid sterility-a1 (hsa1), hsa2, and hsa3, responsible for the F2 sterility in a cross between Oryza sativa ssp. indica and japonica. In this study, we identified that the hsa1 locus contains two interacting genes, HSA1a and HSA1b, within a 30-kb region. HSA1a-j (japonica allele) encodes a highly conserved plant-specific domain of unknown function protein (DUF1618), whereas the indica allele (HSA1a-i(s)) has two deletion mutations that cause disruption of domain structure. The second gene, HSA1b-i(s), encodes an uncharacterized protein with some similarity to a nucleotide-binding protein. Homozygous introgression of indica HSA1a-i(s)-HSA1b-i(s) alleles into japonica showed female gamete abortion at an early mitotic stage. The fact that the recombinant haplotype HSA1a-j-HSA1b-i(s) caused semi-sterility in the heterozygous state with the HSA1a-i(s)-HSA1b-i(s) haplotype suggests that variation in the hsa1 locus is a possible cause of the wide-spectrum sterility barriers seen in F1 hybrids and successive generations in rice. We propose a simple genetic model to explain how a single causal mechanism can drive both F1 and F2 hybrid sterility.


A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

  • Norimitsu Hamaoka‎ et al.
  • Rice (New York, N.Y.)‎
  • 2017‎

High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice.


Interspecific Signaling Between the Parasitic Plant and the Host Plants Regulate Xylem Vessel Cell Differentiation in Haustoria of Cuscuta campestris.

  • Yuki Kaga‎ et al.
  • Frontiers in plant science‎
  • 2020‎

The genus Cuscuta is stem parasitic angiosperms that parasitize a wide range of vascular plants via de novo formation of a distinctive parasitic organ called a haustorium. In the developing haustorium, meristematic cells, which are initiated from the stem cortical tissue, differentiate into haustorial parenchyma cells, which elongate, penetrate into the host tissues, and finally connect with the host vasculature. This interspecific vasculature connection allows the parasite to uptake water and nutrients from the host plant. Although histological aspects of haustorium development have been studied extensively, the molecular mechanisms underlying vasculature development and the interspecific connection with the host vasculature remain largely unknown. To gain insights into the interspecific cell-to-cell interactions involved in haustorium development, we established an in vitro haustorium induction system for Cuscuta campestris using Arabidopsis thaliana rosette leaves as the host plant tissue. The in vitro induction system was used to show that interaction with host tissue was required for the differentiation of parasite haustorial cells into xylem vessel cells. To further characterize the molecular events occurring during host-dependent xylem vessel cell differentiation in C. campestris, we performed a transcriptome analysis using samples from the in vitro induction system. The results showed that orthologs of genes involved in development and proliferation of vascular stem cells were up-regulated even in the absence of host tissue, whereas orthologs of genes required for xylem vessel cell differentiation were up-regulated only after some haustorial cells had elongated and contacted the host xylem. Consistent results were obtained by another transcriptome analysis of the haustorium development in C. campestris undergoing parasitization of an intact host plant. These findings suggest the involvement of host-derived signals in the regulation of non-autonomous xylem vessel differentiation and suggest that its connection to the host xylem during the haustorium development activates a set of key genes for differentiation into xylem vessel cells.


Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

  • John L Bowman‎ et al.
  • Cell‎
  • 2017‎

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.


Stimulation of Cell Elongation by Tetraploidy in Hypocotyls of Dark-Grown Arabidopsis Seedlings.

  • Hideki Narukawa‎ et al.
  • PloS one‎
  • 2015‎

Plant size is largely determined by the size of individual cells. A number of studies showed a link between ploidy and cell size in land plants, but this link remains controversial. In this study, post-germination growth, which occurs entirely by cell elongation, was examined in diploid and autotetraploid hypocotyls of Arabidopsis thaliana (L.) Heynh. Final hypocotyl length was longer in tetraploid plants than in diploid plants, particularly when seedlings were grown in the dark. The longer hypocotyl in the tetraploid seedlings developed as a result of enhanced cell elongation rather than by an increase in cell number. DNA microarray analysis showed that genes involved in the transport of cuticle precursors were downregulated in a defined region of the tetraploid hypocotyl when compared to the diploid hypocotyl. Cuticle permeability, as assessed by toluidine-blue staining, and cuticular structure, as visualized by electron microscopy, were altered in tetraploid plants. Taken together, these data indicate that promotion of cell elongation is responsible for ploidy-dependent size determination in the Arabidopsis hypocotyl, and that this process is directly or indirectly related to cuticular function.


Estimates of alcohol-related oesophageal cancer burden in Japan: systematic review and meta-analyses.

  • Michael Roerecke‎ et al.
  • Bulletin of the World Health Organization‎
  • 2015‎

To refine estimates of the burden of alcohol-related oesophageal cancer in Japan.


Exploring the Loci Responsible for Awn Development in Rice through Comparative Analysis of All AA Genome Species.

  • Kanako Bessho-Uehara‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

Wild rice species have long awns at their seed tips, but this trait has been lost through rice domestication. Awn loss mitigates harvest and seed storage; further, awnlessness increases the grain number and, subsequently, improves grain yield in Asian cultivated rice, highlighting the contribution of the loss of awn to modern rice agriculture. Therefore, identifying the genes regulating awn development would facilitate the elucidation of a part of the domestication process in rice and increase our understanding of the complex mechanism in awn morphogenesis. To identify the novel loci regulating awn development and understand the conservation of genes in other wild rice relatives belonging to the AA genome group, we analyzed the chromosome segment substitution lines (CSSL). In this study, we compared a number of CSSL sets derived by crossing wild rice species in the AA genome group with the cultivated species Oryza sativa ssp. japonica. Two loci on chromosomes 7 and 11 were newly discovered to be responsible for awn development. We also found wild relatives that were used as donor parents of the CSSLs carrying the functional alleles responsible for awn elongation, REGULATOR OF AWN ELONGATION 1 (RAE1) and RAE2. To understand the conserveness of RAE1 and RAE2 in wild rice relatives, we analyzed RAE1 and RAE2 sequences of 175 accessions among diverse AA genome species retrieved from the sequence read archive (SRA) database. Comparative sequence analysis demonstrated that most wild rice AA genome species maintained functional RAE1 and RAE2, whereas most Asian rice cultivars have lost either or both functions. In addition, some different loss-of-function alleles of RAE1 and RAE2 were found in Asian cultivated species. These findings suggest that different combinations of dysfunctional alleles of RAE1 and RAE2 were selected after the speciation of O. sativa, and that two-step loss of function in RAE1 and RAE2 contributed to awnlessness in Asian cultivated rice.


Cryogenian Origin and Subsequent Diversification of the Plant Cell-Wall Enzyme XTH Family.

  • Naoki Shinohara‎ et al.
  • Plant & cell physiology‎
  • 2021‎

All land plants encode large multigene families of xyloglucan endotransglucosylase/hydrolases (XTHs), plant-specific enzymes that cleave and reconnect plant cell-wall polysaccharides. Despite the ubiquity of these enzymes, considerable uncertainty remains regarding the evolutionary history of the XTH family. Phylogenomic and comparative analyses in this study traced the non-plant origins of the XTH family to Alphaproteobacteria ExoKs, bacterial enzymes involved in loosening biofilms, rather than Firmicutes licheninases, plant biomass digesting enzymes, as previously supposed. The relevant horizontal gene transfer (HGT) event was mapped to the divergence of non-swimming charophycean algae in the Cryogenian geological period. This HGT event was the likely origin of charophycean EG16-2s, which are putative intermediates between ExoKs and XTHs. Another HGT event in the Cryogenian may have led from EG16-2s or ExoKs to fungal Congo Red Hypersensitive proteins (CRHs) to fungal CRHs, enzymes that cleave and reconnect chitin and glucans in fungal cell walls. This successive transfer of enzyme-encoding genes may have supported the adaptation of plants and fungi to the ancient icy environment by facilitating their sessile lifestyles. Furthermore, several protein evolutionary steps, including coevolution of substrate-interacting residues and putative intra-family gene fusion, occurred in the land plant lineage and drove diversification of the XTH family. At least some of those events correlated with the evolutionary gain of broader substrate specificities, which may have underpinned the expansion of the XTH family by enhancing duplicated gene survival. Together, this study highlights the Precambrian evolution of life and the mode of multigene family expansion in the evolutionary history of the XTH family.


eQTLs Regulating Transcript Variations Associated with Rapid Internode Elongation in Deepwater Rice.

  • Takeshi Kuroha‎ et al.
  • Frontiers in plant science‎
  • 2017‎

To avoid low oxygen, oxygen deficiency or oxygen deprivation, deepwater rice cultivated in flood planes can develop elongated internodes in response to submergence. Knowledge of the gene regulatory networks underlying rapid internode elongation is important for an understanding of the evolution and adaptation of major crops in response to flooding. To elucidate the genetic and molecular basis controlling their deepwater response we used microarrays and performed expression quantitative trait loci (eQTL) and phenotypic QTL (phQTL) analyses of internode samples of 85 recombinant inbred line (RIL) populations of non-deepwater (Taichung 65)- and deepwater rice (Bhadua). After evaluating the phenotypic response of the RILs exposed to submergence, confirming the genotypes of the populations, and generating 188 genetic markers, we identified 10,047 significant eQTLs comprised of 2,902 cis-eQTLs and 7,145 trans-eQTLs and three significant eQTL hotspots on chromosomes 1, 4, and 12 that affect the expression of many genes. The hotspots on chromosomes 1 and 4 located at different position from phQTLs detected in this study and other previous studies. We then regarded the eQTL hotspots as key regulatory points to infer causal regulatory networks of deepwater response including rapid internode elongation. Our results suggest that the downstream regulation of the eQTL hotspots on chromosomes 1 and 4 is independent, and that the target genes are partially regulated by SNORKEL1 and SNORKEL2 genes (SK1/2), key ethylene response factors. Subsequent bioinformatic analyses, including gene ontology-based annotation and functional enrichment analysis and promoter enrichment analysis, contribute to enhance our understanding of SK1/2-dependent and independent pathways. One remarkable observation is that the functional categories related to photosynthesis and light signaling are significantly over-represented in the candidate target genes of SK1/2. The combined results of these investigations together with genetical genomics approaches using structured populations with a deepwater response are also discussed in the context of current molecular models concerning the rapid internode elongation in deepwater rice. This study provides new insights into the underlying genetic architecture of gene expression regulating the response to flooding in deepwater rice and will be an important community resource for analyses on the genetic basis of deepwater responses.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: