Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Characterization and Expression Analysis of Phytoene Synthase from Bread Wheat (Triticum aestivum L.).

  • Flowerika‎ et al.
  • PloS one‎
  • 2016‎

Phytoene synthase (PSY) regulates the first committed step of the carotenoid biosynthetic pathway in plants. The present work reports identification and characterization of the three PSY genes (TaPSY1, TaPSY2 and TaPSY3) in wheat (Triticum aestivum L.). The TaPSY1, TaPSY2, and TaPSY3 genes consisted of three homoeologs on the long arm of group 7 chromosome (7L), short arm of group 5 chromosome (5S), and long arm of group 5 chromosome (5L), respectively in each subgenomes (A, B, and D) with a similarity range from 89% to 97%. The protein sequence analysis demonstrated that TaPSY1 and TaPSY3 retain most of conserved motifs for enzyme activity. Phylogenetic analysis of all TaPSY revealed an evolutionary relationship among PSY proteins of various monocot species. TaPSY derived from A and D subgenomes shared proximity to the PSY of Triticum urartu and Aegilops tauschii, respectively. The differential expression of TaPSY1, TaPSY2, and TaPSY3 in the various tissues, seed development stages, and stress treatments suggested their role in plant development, and stress condition. TaPSY3 showed higher expression in all tissues, followed by TaPSY1. The presence of multiple stress responsive cis-regulatory elements in promoter region of TaPSY3 correlated with the higher expression during drought and heat stresses has suggested their role in these conditions. The expression pattern of TaPSY3 was correlated with the accumulation of β-carotene in the seed developmental stages. Bacterial complementation assay has validated the functional activity of each TaPSY protein. Hence, TaPSY can be explored in developing genetically improved wheat crop.


AMP-independent activator of AMPK for treatment of mitochondrial disorders.

  • Tereza Moore‎ et al.
  • PloS one‎
  • 2020‎

Mitochondrial diseases are a clinically heterogenous group of disorders caused by respiratory chain dysfunction and associated with progressive, multi-systemic phenotype. There is no effective treatment or cure, and no FDA-approved drug for treating mitochondrial disease. To identify and characterize potential therapeutic compounds, we developed an in vitro screening assay and identified a group of direct AMP-activated protein kinase (AMPK) activators originally developed for the treatment of diabetes and metabolic syndrome. Unlike previously investigated AMPK agonists such as AICAR, these compounds allosterically activate AMPK in an AMP-independent manner, thereby increasing specificity and decreasing pleiotropic effects. The direct AMPK activator PT1 significantly improved mitochondrial function in assays of cellular respiration, energy status, and cellular redox. PT1 also protected against retinal degeneration in a mouse model of photoreceptor degeneration associated with mitochondrial dysfunction and oxidative stress, further supporting the therapeutic potential of AMP-independent AMPK agonists in the treatment of mitochondrial disease.


Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine.

  • Shivani‎ et al.
  • PloS one‎
  • 2017‎

Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana.


The R2R3-MYB gene family in banana (Musa acuminata): Genome-wide identification, classification and expression patterns.

  • Boas Pucker‎ et al.
  • PloS one‎
  • 2020‎

The R2R3-MYB genes comprise one of the largest transcription factor gene families in plants, playing regulatory roles in plant-specific developmental processes, defense responses and metabolite accumulation. To date MYB family genes have not yet been comprehensively identified in the major staple fruit crop banana. In this study, we present a comprehensive, genome-wide analysis of the MYB genes from Musa acuminata DH-Pahang (A genome). A total of 285 R2R3-MYB genes as well as genes encoding three other classes of MYB proteins containing multiple MYB repeats were identified and characterised with respect to structure and chromosomal organisation. Organ- and development-specific expression patterns were determined from RNA-Seq data. For 280 M. acuminata MYB genes for which expression was found in at least one of the analysed samples, a variety of expression patterns were detected. The M. acuminata R2R3-MYB genes were functionally categorised, leading to the identification of seven clades containing only M. acuminata R2R3-MYBs. The encoded proteins may have specialised functions that were acquired or expanded in Musa during genome evolution. This functional classification and expression analysis of the MYB gene family in banana establishes a solid foundation for future comprehensive functional analysis of MaMYBs and can be utilized in banana improvement programmes.


Dexmedetomidine-induced cardioprotection is mediated by inhibition of high mobility group box-1 and the cholinergic anti-inflammatory pathway in myocardial ischemia-reperfusion injury.

  • Juan Zhang‎ et al.
  • PloS one‎
  • 2019‎

Dexmedetomidine (DEX) is a selective α2-adrenoceptor agonist that has anti-inflammatory and cardioprotective effects in myocardial ischemia/reperfusion (I/R) injury. The present study aimed to investigate the underlying mechanism by which DEX protects against myocardial I/R.


Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy.

  • Amanda H Kahn-Kirby‎ et al.
  • PloS one‎
  • 2019‎

Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes. Activation of the ferroptosis pathway has been implicated in a growing number of disorders, including epilepsy. Given that ferroptosis is regulated by balancing the activities of glutathione peroxidase-4 (GPX4) and 15-lipoxygenase (15-LO), targeting these enzymes may provide a rational therapeutic strategy to modulate seizure. The clinical-stage therapeutic vatiquinone (EPI-743, α-tocotrienol quinone) was reported to reduce seizure frequency and associated morbidity in children with the mitochondrial disorder pontocerebellar hypoplasia type 6. We sought to elucidate the molecular mechanism of EPI-743 and explore the potential of targeting 15-LO to treat additional mitochondrial disease-associated epilepsies.


Pathogenic Mutations in Cancer-Predisposing Genes: A Survey of 300 Patients with Whole-Genome Sequencing and Lifetime Electronic Health Records.

  • Karen Y He‎ et al.
  • PloS one‎
  • 2016‎

It is unclear whether and how whole-genome sequencing (WGS) data can be used to implement genomic medicine. Our objective is to retrospectively evaluate whether WGS can facilitate improving prevention and care for patients with susceptibility to cancer syndromes.


A novel mutation in the HSD17B10 gene of a 10-year-old boy with refractory epilepsy, choreoathetosis and learning disability.

  • Laurie H Seaver‎ et al.
  • PloS one‎
  • 2011‎

Hydroxysteroid (17beta) dehydrogenase 10 (HSD10) is a mitochondrial multifunctional enzyme encoded by the HSD17B10 gene. Missense mutations in this gene result in HSD10 deficiency, whereas a silent mutation results in mental retardation, X-linked, syndromic 10 (MRXS10). Here we report a novel missense mutation found in the HSD17B10 gene, namely c.194T>C transition (rs104886492), brought about by the loss of two forked methyl groups of valine 65 in the HSD10 active site. The affected boy, who possesses mutant HSD10 (p.V65A), has a neurological syndrome with metabolic derangements, choreoathetosis, refractory epilepsy and learning disability. He has no history of acute decompensation or metabolic acidosis whereas his urine organic acid profile, showing elevated levels of 2-methyl-3-hydroxybutyrate and tiglylglycine, is characteristic of HSD10 deficiency. His HSD10 activity was much lower than the normal control level, with normal β-ketothiolase activity. The c.194T>C mutation in HSD17B10 can be identified by the restriction fragment polymorphism analysis, thereby facilitating the screening of this novel mutation in individuals with intellectual disability of unknown etiology and their family members much easier. The patient's mother is an asymptomatic carrier, and has a mixed ancestry (Hawaiian, Japanese and Chinese). This demonstrates that HSD10 deficiency patients are not confined to a particular ethnicity although previously reported cases were either Spanish or German descendants.


PRmePRed: A protein arginine methylation prediction tool.

  • Pawan Kumar‎ et al.
  • PloS one‎
  • 2017‎

Protein methylation is an important Post-Translational Modification (PTMs) of proteins. Arginine methylation carries out and regulates several important biological functions, including gene regulation and signal transduction. Experimental identification of arginine methylation site is a daunting task as it is costly as well as time and labour intensive. Hence reliable prediction tools play an important task in rapid screening and identification of possible methylation sites in proteomes. Our preliminary assessment using the available prediction methods on collected data yielded unimpressive results. This motivated us to perform a comprehensive data analysis and appraisal of features relevant in the context of biological significance, that led to the development of a prediction tool PRmePRed with better performance. The PRmePRed perform reasonably well with an accuracy of 84.10%, 82.38% sensitivity, 83.77% specificity, and Matthew's correlation coefficient of 66.20% in 10-fold cross-validation. PRmePRed is freely available at http://bioinfo.icgeb.res.in/PRmePRed/.


Comparative transcriptome analysis of unripe and ripe banana (cv. Nendran) unraveling genes involved in ripening and other related processes.

  • Karambir Kaur‎ et al.
  • PloS one‎
  • 2021‎

Banana is one of the most important fruit crops consumed globally owing to its high nutritional value. Previously, we demonstrated that the ripe pulp of the banana cultivar (cv.) Nendran (AAB) contained a high amount of pro-vitamin A carotenoids. However, the molecular factors involved in the ripening process in Nendran fruit are unexplored. Hence, we commenced a transcriptome study by using the Illumina HiSeq 2500 at two stages i.e. unripe and ripe fruit-pulp of Nendran. Overall, 3474 up and 4727 down-regulated genes were obtained. A large number of identified transcripts were related to genes involved in ripening, cell wall degradation and aroma formation. Gene ontology analysis highlighted differentially expressed genes that play a key role in various pathways. These pathways were mainly linked to cellular, molecular and biological processes. The present transcriptome study also reveals a crucial role of up-regulated carotenoid biosynthesis pathway genes namely, lycopene beta cyclase and geranylgeranyl pyrophosphate synthase at the ripening stage. Genes related to the ripening and other processes like aroma and flavor were highly expressed in the ripe pulp. Expression of numerous transcription factor family genes was also identified. This study lays a path towards understanding the ripening, carotenoid accumulation and other related processes in banana.


Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X-linked intellectual disability.

  • Christina Grau‎ et al.
  • PloS one‎
  • 2017‎

By searching a clinical database of over 60,000 individuals referred for array-based CNV analyses and online resources, we identified four males from three families with intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly who carried small, overlapping deletions of Xp11.22. The maximum region of overlap between their deletions spanned ~430 kb and included two pseudogenes, CENPVL1 and CENPVL2, whose functions are not known, and two protein coding genes-the G1 to S phase transition 2 gene (GSPT2) and the MAGE family member D1 gene (MAGED1). Deletions of this ~430 kb region have not been previously implicated in human disease. Duplications of GSPT2 have been documented in individuals with intellectual disability, but the phenotypic consequences of a loss of GSPT2 function have not been elucidated in humans or mouse models. Changes in MAGED1 have not been associated with intellectual disability in humans, but loss of MAGED1 function is associated with neurocognitive and neurobehavioral phenotypes in mice. In all cases, the Xp11.22 deletion was inherited from an unaffected mother. Studies performed on DNA from one of these mothers did not show evidence of skewed X-inactivation. These results suggest that deletions of an ~430 kb region on chromosome Xp11.22 that encompass CENPVL1, CENPVL2, GSPT2 and MAGED1 cause a distinct X-linked syndrome characterized by intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly. Loss of GSPT2 and/or MAGED1 function may contribute to the intellectual disability and developmental delay seen in males with these deletions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: