Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,497 papers

De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome.

  • Lindsay C Burrage‎ et al.
  • American journal of human genetics‎
  • 2015‎

Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5' end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1(st) coding exon), c.16A>T (p.Lys6(∗)) and c.35_38delTCAA (p.Ile12Lysfs(∗)4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5' end of the geminin protein. All three GMNN mutations identified alter sites 5' to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS.


Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell.

  • Feng-Fei Li‎ et al.
  • Journal of diabetes research‎
  • 2016‎

We previously isolated islet stellate cells (ISCs) from healthy Wistar rat islets. In the present study, we isolated "already primed by diabetic environment" ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN). We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2'-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI-) positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis.


The natural logarithm of zinc-α2-glycoprotein/HOMA-IR is a better predictor of insulin sensitivity than the product of triglycerides and glucose and the other lipid ratios.

  • Chunmei Qu‎ et al.
  • Cytokine‎
  • 2016‎

The euglycemic-hyperinsulinemic clamp (EHC) is not available in most clinical settings and is costly, time consuming and invasive, and requires trained staff. Therefore, an accessible and inexpensive test to identify insulin resistance (IR) is needed. The aim of this study is to assess whether zinc-α2-glycoprotein (ZAG) index [Ln ZAG/homeostasis model assessment of IR (HOMA-IR)] is a better surrogate index for estimating IR or metabolic syndrome (MetS) compared with other surrogate indices.


Isoalantolactone Enhances the Radiosensitivity of UMSCC-10A Cells via Specific Inhibition of Erk1/2 Phosphorylation.

  • Yonggang Fan‎ et al.
  • PloS one‎
  • 2015‎

Although radiotherapy is one of the mainstream approaches for the treatment of head and neck squamous cell carcinoma (HNSCC), this cancer is always associated with resistance to radiation. In this study, the mechanism of action of isoalantolactone as well as its radiosensitizing effect was investigated in UMSCC-10A cells.


Glucagon-like peptide-1 receptor agonists and heart failure in type 2 diabetes: systematic review and meta-analysis of randomized and observational studies.

  • Ling Li‎ et al.
  • BMC cardiovascular disorders‎
  • 2016‎

The effect of glucagon-like peptide-1(GLP-1) receptor agonists on heart failure remains uncertain. We therefore conducted a systematic review to assess the possible impact of GLP-1 agonists on heart failure or hospitalization for heart failure in patients with type 2 diabetes.


Exogenous BDNF increases neurogenesis in the hippocampus in experimental Streptococcus pneumoniae meningitis.

  • Di Lian‎ et al.
  • Journal of neuroimmunology‎
  • 2016‎

Despite the effective use of antibiotics, occurrences of mortality and neurological sequelae following Streptococcus pneumoniae meningitis remain high.


De Novo Truncating Variants in SON Cause Intellectual Disability, Congenital Malformations, and Failure to Thrive.

  • Mari J Tokita‎ et al.
  • American journal of human genetics‎
  • 2016‎

SON is a key component of the spliceosomal complex and a critical mediator of constitutive and alternative splicing. Additionally, SON has been shown to influence cell-cycle progression, genomic integrity, and maintenance of pluripotency in stem cell populations. The clear functional relevance of SON in coordinating essential cellular processes and its presence in diverse human tissues suggests that intact SON might be crucial for normal growth and development. However, the phenotypic effects of deleterious germline variants in SON have not been clearly defined. Herein, we describe seven unrelated individuals with de novo variants in SON and propose that deleterious variants in SON are associated with a severe multisystem disorder characterized by developmental delay, persistent feeding difficulties, and congenital malformations, including brain anomalies.


Dual Function of NAC072 in ABF3-Mediated ABA-Responsive Gene Regulation in Arabidopsis.

  • Xiaoyun Li‎ et al.
  • Frontiers in plant science‎
  • 2016‎

The NAM, ATAF1/2, and CUC2 (NAC) domain proteins play various roles in plant growth and stress responses. Arabidopsis NAC transcription factor NAC072 has been reported as a transcriptional activator in Abscisic acid (ABA)-responsive gene expression. However, the exact function of NAC072 in ABA signaling is still elusive. In this study, we present evidence for the interrelation between NAC072 and ABA-responsive element binding factor 3 (ABF3) that act as a positive regulator of ABA-responsive gene expression in Arabidopsis. The transcript of NAC072 is up-regulated by ABF3 in ABA response, and NAC072 protein interacts with ABF3. Enhanced ABA sensitivity occurs in nac072 mutant plants that overexpressed ABF3. However, overexpression of NAC072 weakened the ABA sensitivity in the abf3 mutant plants, but instead of recovering the ABA sensitivity of abf3. NAC072 and ABF3 cooperate to regulate RD29A expression, but are antagonistic when regulating RD29B expression. Therefore, NAC072 displays a dual function in ABF3-mediated ABA-responsive gene regulation.


Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies.

  • Kevin H Chen‎ et al.
  • Oncotarget‎
  • 2016‎

Peripheral T-cell lymphomas (PTCLS) comprise a diverse group of difficult to treat, very aggressive non-Hodgkin's lymphomas (NHLS) with poor prognoses and dismal patient outlook. Despite the fact that PTCLs comprise the majority of T-cell malignancies, the standard of care is poorly established. Chimeric antigen receptor (CAR) immunotherapy has shown in B-cell malignancies to be an effective curative option and this extends promise into treating T-cell malignancies. Because PTCLS frequently develop from mature T-cells, CD3 is similarly strongly and uniformly expressed in many PTCL malignancies, with expression specific to the hematological compartment thus making it an attractive target for CAR design. We engineered a robust 3rd generation anti-CD3 CAR construct (CD3CAR) into an NK cell line (NK-92). We found that CD3CAR NK-92 cells specifically and potently lysed diverse CD3+ human PTCL primary samples as well as T-cell leukemia cells lines ex vivo. Furthermore, CD3CAR NK-92 cells effectively controlled and suppressed Jurkat tumor cell growth in vivo and significantly prolonged survival. In this study, we present the CAR directed targeting of a novel target - CD3 using CAR modified NK-92 cells with an emphasis on efficacy, specificity, and potential for new therapeutic approaches that could improve the current standard of care for PTCLs.


Comparison of Short-Course Radiotherapy Versus Long-Course Radiotherapy for Treatment of Metastatic Spinal Cord Compression: A Systematic Review and Meta-Analysis.

  • Song Qu‎ et al.
  • Medicine‎
  • 2015‎

In this study, we evaluate the efficacy of short-course radiotherapy (SCRT) versus long-course radiotherapy (LCRT) in the treatment of metastatic spinal cord compression (MSCC).PubMed, EMBASE, and Web of Science were searched up to April 2015. Relevant data were extracted based on inclusion and exclusion criteria. Methodological quality of randomized controlled trial (RCT) was evaluated using modified Jadad scale; non-RCT was evaluated using Newcastle-Ottawa Scale. Meta-analysis was performed using RevMan 5.3 software.Fourteen studies with 2239 patients were included. Results of meta-analysis showed that there were no significant differences between SCRT and long-course radiotherapy LCRT in 6-month overall survival rate (risk ratio [RR] = 0.97, 95% confidence interval [CI] 0.88, 1.07, P = 0.55), 1-year overall survival rate (RR = 0.94, 95% CI 0.85, 1.04, P = 0.22), motor function improvement (RR = 0.96, 95% CI 0.81, 1.13, P = 0.63), no change on motor function (RR = 0.98, 95% CI (0.88, 1.09), P = 0.74], and deterioration on motor function (RR = 0.96, 95% CI 0.71, 1.31, P = 0.78). Compared with SCRT, LCRT significantly increased 6-month local control rate (RR = 0.87, 95% CI 0.80, 0.95, P = 0.002), 1-year local control rate (RR = 0.83, 95% CI 0.71, 0.97, P = 0.02), and 2-year local control rate (RR = 0.83, 95% CI 0.79, 0.87, P < 0.00001).Both LCRT and SCRT provided similar survival rates and functional outcome, but LCRT showed better local control rates than SCRT. However, considering low cost and good patient's compliance, SCRT may be a better choice.


Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI.

  • Jingjuan Wang‎ et al.
  • PloS one‎
  • 2016‎

Functional networks are regarded as important mechanisms for increasing our understanding of brain function in healthy and diseased states, and increased interest has been focused on extending the study of functional networks to animal models because such models provide a functional understanding of disease progression, therapy and repair. In rodents, the retrosplenial cortex (RSC) is an important cortical region because it has a large size and presents transitional patterns of lamination between the neocortex and archicortex. In addition, a number of invasive studies have highlighted the importance of the RSC for many functions. However, the network based on the RSC in rodents remains unclear. Based on the critical importance of the RSC, we defined the bilateral RSCs as two regions of interest and estimated the network based on the RSC. The results showed that the related regions include the parietal association cortex, hippocampus, thalamus nucleus, midbrain structures, and hypothalamic mammillary bodies. Our findings indicate two possible major networks: a sensory-cognitive network that has a hub in the RSCs and processes sensory information, spatial learning, and episodic memory; and a second network that is involved in the regulation of visceral functions and arousal. In addition, functional asymmetry between the bilateral RSCs was observed.


A Clade-Specific Arabidopsis Gene Connects Primary Metabolism and Senescence.

  • Dallas C Jones‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Nearly immobile, plants have evolved new components to be able to respond to changing environments. One example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific orphan gene that integrates primary metabolism with adaptation to environment changes. SAQR (Senescence-Associated and QQS-Related, AT1G64360), is unique to a clade within the family Brassicaceae; as such, the gene may have arisen about 20 million years ago. SAQR is up-regulated in QQS RNAi mutant and in the apx1 mutant under light-induced oxidative stress. SAQR plays a role in carbon allocation: overexpression lines of SAQR have significantly decreased starch content; conversely, in a saqr T-DNA knockout (KO) line, starch accumulation is increased. Meta-analysis of public microarray data indicates that SAQR expression is correlated with expression of a subset of genes involved in senescence, defense, and stress responses. SAQR promoter::GUS expression analysis reveals that SAQR expression increases after leaf expansion and photosynthetic capacity have peaked, just prior to visible natural senescence. SAQR is expressed predominantly within leaf and cotyledon vasculature, increasing in intensity as natural senescence continues, and then decreasing prior to death. In contrast, under experimentally induced senescence, SAQR expression increases in vasculature of cotyledons but not in true leaves. In SAQR KO line, the transcript level of the dirigent-like disease resistance gene (AT1G22900) is increased, while that of the Early Light Induced Protein 1 gene (ELIP1, AT3G22840) is decreased. Taken together, these data indicate that SAQR may function in the QQS network, playing a role in integration of primary metabolism with adaptation to internal and environmental changes, specifically those that affect the process of senescence.


PIM kinases as therapeutic targets against advanced melanoma.

  • Batool Shannan‎ et al.
  • Oncotarget‎
  • 2016‎

Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients.


NHERF1, a novel GPER associated protein, increases stability and activation of GPER in ER-positive breast cancer.

  • Ran Meng‎ et al.
  • Oncotarget‎
  • 2016‎

G protein-coupled estrogen receptor (GPER) plays an important role in mediating the effects of estradiol. High levels of GPER have been implicated to associate with the malignant progress of invasive breast cancer (IBC). However, the mechanisms by which GPER protein levels were regulated remain unclear. In this study, PDZ protein Na+/H+ exchanger regulatory factor (NHERF1) was found to interact with GPER in breast cancer cells. This interaction was mediated by the PDZ2 domain of NHERF1 and the carboxyl terminal PDZ binding motif of GPER. NHERF1 was demonstrated to facilitate GPER expression at post-transcriptional level and improve GPER protein stability by inhibiting the receptor degradation via ubiquitin-proteasome pathway in a GPER/NHERF1 interaction-dependent manner. In addition, GPER protein levels are positively associated with NHERF1 protein levels in a panel of estrogen receptor (ER)-positive breast cancer cells. Furthermore, analysis of clinical IBC data from The Cancer Genome Atlas (TCGA) showed no significant difference in GPER mRNA levels between ER-positive IBC and normal breast tissues. However, gene set enrichment analysis (GSEA) showed that GPER signaling is ultra-activated in ER-positive IBC when compared with normal and its activation is positively associated with NHERF1 mRNA levels. Taken together, our findings identify NHERF1 as a new binding partner for GPER and its overexpression promotes protein stability and activation of GPER in ER-positive IBC. Our data indicate that regulation of GPER stability by NHERF1 may contribute to GPER-mediated carcinogenesis in ER-positive IBC.


Loss-of-function screening to identify miRNAs involved in senescence: tumor suppressor activity of miRNA-335 and its new target CARF.

  • Yue Yu‎ et al.
  • Scientific reports‎
  • 2016‎

Significance of microRNAs (miRs), small non-coding molecules, has been implicated in a variety of biological processes. Here, we recruited retroviral insertional mutagenesis to obtain induction of an arbitrary noncoding RNAs, and coupled it with a cell based loss-of-function (5-Aza-2'-deoxycytidine (5Aza-dC)-induced senescence bypass) screening system. Cells that escaped 5-Aza-dC-induced senescence were subjected to miR-microarray analysis with respect to the untreated control. We identified miR-335 as one of the upregulated miRs. In order to characterize the functional significance, we overexpressed miR-335 in human cancer cells and found that it caused growth suppression. We demonstrate that the latter accounted for inhibition of 5-Aza-dC incorporation into the cell genome, enabling them to escape from induction of senescence. We also report that CARF (Collaborator of ARF) is a new target of miR-335 that regulates its growth suppressor function by complex crosstalk with other proteins including p16(INK4A), pRB, HDM2 and p21(WAF1).


Antiviral effects of IFIT1 in human cytomegalovirus-infected fetal astrocytes.

  • Li Zhang‎ et al.
  • Journal of medical virology‎
  • 2017‎

The prominent feature of human cytomegalovirus (HCMV) is cell tropism specificity for human fetal nervous system, which leads to severe fetal nervous system damage especially in first-trimester gestation. In this study, human astrocytes isolated from fetal brain were infected with HCMV AD169 and whole genome transcriptome profile was performed. The results showed that the gene expression of interferon stimulated genes (ISGs), chemokine and chemokine receptors were significantly up-regulated (P < 0.01). The antiviral replication effects of IFIT1 (Interferon-induced protein with tetratricopeptide repeats 1, Fc = 148.17) was investigated. Lentivirus with IFIT1 overexpression or knockdown was transduced into astrocytes, respectively. The viral mRNA, protein expression and HCMV titers were determined. The results showed that IE1, IE2, pp65, and viral titers were significantly decreased in IFIT1 overexpression group and enhanced in the knockdown group compared with control one (P < 0.01). Taken together, this study revealed IFIT1 played an important antiviral role in HCMV infected fetal astrocytes. The prominent feature of human cytomegalovirus (HCMV) is cellular tropism specificity for human fetal brain nervous system leading to severe fetal nervous damage especially in first-trimester gestation. In this study, human astrocytes isolated from first-trimester fetal brain were infected with HCMV AD169 and IFIT1 was studied for its antiviral replication effects. The results provided insights into the function of IFIT1 as a key factor in antiviral defense contributing to development of targeted therapeutics to fetal brain with HCMV infection. J. Med. Virol. 89:672-684, 2017. © 2016 Wiley Periodicals, Inc.


Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes: a systematic review and meta-analysis.

  • Longhao Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Alpha-glucosidase inhibitors (AGIs) was reported to be associated with several rare adverse hepatic events, but with inconsistent results. We aimed to investigate the risk of hepatotoxicity associated with the use of AGIs in patients with type 2 diabetes mellitus (T2DM), and performed a systematic review and meta-analysis. Fourteen studies (n = 2881) were eligible, all of which were RCTs. Meta-analysis of data regarding elevation of more than 3-fold the upper limit of normal (ULN) of AST and ALT showed statistically significant differences between AGIs treatment versus control (OR 6.86, 95% CI 2.50 to 18.80; OR 6.48, 95% CI 2.40 to 17.49). Subgroup analyses of elevation of more than 1.8-fold ULN of AST and ALT by dose of AGIs showed differential effects on AST and ALT (AST: OR 0.38 vs 7.31, interaction P = 0.003; ALT: OR 0.32 vs 4.55, interaction p = 0.02). Meta-analysis showed that AGIs might increase the risk of hepatotoxicity, and higher dose appeared to be associated with higher risk of hepatotoxicity. However, the evidence is limited with surrogate measures (i.e. ALT and AST), and no clinically important adverse events were observed.


The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis.

  • Xu Liu‎ et al.
  • Nature communications‎
  • 2016‎

The antagonistic crosstalk between gibberellic acid (GA) and abscisic acid (ABA) plays a pivotal role in the modulation of seed germination. However, the molecular mechanism of such phytohormone interaction remains largely elusive. Here we show that three Arabidopsis NUCLEAR FACTOR-Y C (NF-YC) homologues NF-YC3, NF-YC4 and NF-YC9 redundantly modulate GA- and ABA-mediated seed germination. These NF-YCs interact with the DELLA protein RGL2, a key repressor of GA signalling. The NF-YC-RGL2 module targets ABI5, a gene encoding a core component of ABA signalling, via specific CCAAT elements and collectively regulates a set of GA- and ABA-responsive genes, thus controlling germination. These results suggest that the NF-YC-RGL2-ABI5 module integrates GA and ABA signalling pathways during seed germination.


Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling.

  • Bao-Qing Xu‎ et al.
  • Oncotarget‎
  • 2016‎

Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer.


Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

  • Ridhi Goel‎ et al.
  • Frontiers in plant science‎
  • 2016‎

The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: