Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

MUSTANG-MR structural sieving server: applications in protein structural analysis and crystallography.

  • Arun S Konagurthu‎ et al.
  • PloS one‎
  • 2010‎

A central tenet of structural biology is that related proteins of common function share structural similarity. This has key practical consequences for the derivation and analysis of protein structures, and is exploited by the process of "molecular sieving" whereby a common core is progressively distilled from a comparison of two or more protein structures. This paper reports a novel web server for "sieving" of protein structures, based on the multiple structural alignment program MUSTANG.


Crystallographic and molecular dynamics analysis of loop motions unmasking the peptidoglycan-binding site in stator protein MotB of flagellar motor.

  • Cyril F Reboul‎ et al.
  • PloS one‎
  • 2011‎

The C-terminal domain of MotB (MotB-C) shows high sequence similarity to outer membrane protein A and related peptidoglycan (PG)-binding proteins. It is believed to anchor the power-generating MotA/MotB stator unit of the bacterial flagellar motor to the peptidoglycan layer of the cell wall. We previously reported the first crystal structure of this domain and made a puzzling observation that all conserved residues that are thought to be essential for PG recognition are buried and inaccessible in the crystal structure. In this study, we tested a hypothesis that peptidoglycan binding is preceded by, or accompanied by, some structural reorganization that exposes the key conserved residues.


Prodepth: predict residue depth by support vector regression approach from protein sequences only.

  • Jiangning Song‎ et al.
  • PloS one‎
  • 2009‎

Residue depth (RD) is a solvent exposure measure that complements the information provided by conventional accessible surface area (ASA) and describes to what extent a residue is buried in the protein structure space. Previous studies have established that RD is correlated with several protein properties, such as protein stability, residue conservation and amino acid types. Accurate prediction of RD has many potentially important applications in the field of structural bioinformatics, for example, facilitating the identification of functionally important residues, or residues in the folding nucleus, or enzyme active sites from sequence information. In this work, we introduce an efficient approach that uses support vector regression to quantify the relationship between RD and protein sequence. We systematically investigated eight different sequence encoding schemes including both local and global sequence characteristics and examined their respective prediction performances. For the objective evaluation of our approach, we used 5-fold cross-validation to assess the prediction accuracies and showed that the overall best performance could be achieved with a correlation coefficient (CC) of 0.71 between the observed and predicted RD values and a root mean square error (RMSE) of 1.74, after incorporating the relevant multiple sequence features. The results suggest that residue depth could be reliably predicted solely from protein primary sequences: local sequence environments are the major determinants, while global sequence features could influence the prediction performance marginally. We highlight two examples as a comparison in order to illustrate the applicability of this approach. We also discuss the potential implications of this new structural parameter in the field of protein structure prediction and homology modeling. This method might prove to be a powerful tool for sequence analysis.


Solution structure of a soluble fragment derived from a membrane protein by shotgun proteolysis.

  • Mark D Allen‎ et al.
  • Protein engineering, design & selection : PEDS‎
  • 2015‎

We have previously reported a phage display method for the identification of protein domains on a genome-wide scale (shotgun proteolysis). Here we present the solution structure of a fragment of the Escherichia coli membrane protein yrfF, as identified by shotgun proteolysis, and determined by NMR spectroscopy. Despite the absence of computational predictions, the fragment formed a well-defined beta-barrel structure, distantly falling within the OB-fold classification. Our results highlight the potential of high-throughput experimental approaches for the identification of protein domains for structural studies.


Modelling of Thyroid Peroxidase Reveals Insights into Its Enzyme Function and Autoantigenicity.

  • Sarah N Le‎ et al.
  • PloS one‎
  • 2015‎

Thyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B). TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined. We have used a molecular modelling approach to investigate plausible modes of TPO structure and dimer organisation. Sequence features of the C-terminus are consistent with a coiled-coil dimerization motif that most likely anchors the TPO dimer in the apical membrane of thyroid follicular cells. Two contrasting models of TPO were produced, differing in the orientation and exposure of their active sites relative to the membrane. Both models are equally plausible based upon the known enzymatic function of TPO. The "trans" model places IDR-B on the membrane-facing side of the myeloperoxidase (MPO)-like domain, potentially hindering access of autoantibodies, necessitating considerable conformational change, and perhaps even dissociation of the dimer into monomers. IDR-A spans MPO- and CCP-like domains and is relatively fragmented compared to IDR-B, therefore most likely requiring domain rearrangements in order to coalesce into one compact epitope. Less epitope fragmentation and higher solvent accessibility of the "cis" model favours it slightly over the "trans" model. Here, IDR-B clusters towards the surface of the MPO-like domain facing the thyroid follicular lumen preventing steric hindrance of autoantibodies. However, conformational rearrangements may still be necessary to allow full engagement with autoantibodies, with IDR-B on both models being close to the dimer interface. Taken together, the modelling highlights the need to consider the oligomeric state of TPO, its conformational properties, and its proximity to the membrane, when interpreting epitope-mapping data.


Structure and Function Characterization of the a1a2 Motifs of Streptococcus pyogenes M Protein in Human Plasminogen Binding.

  • Adam J H Quek‎ et al.
  • Journal of molecular biology‎
  • 2019‎

Plasminogen (Plg)-binding M protein (PAM) is a group A streptococcal cell surface receptor that is crucial for bacterial virulence. Previous studies revealed that, by binding to the kringle 2 (KR2) domain of host Plg, the pathogen attains a proteolytic microenvironment on the cell surface that facilitates its dissemination from the primary infection site. Each of the PAM molecules in their dimeric assembly consists of two Plg binding motifs (called the a1 and a2 repeats). To date, the molecular interactions between the a1 repeat and KR2 have been structurally characterized, whereas the role of the a2 repeat is less well defined. Here, we report the 1.7-Å x-ray crystal structure of KR2 in complex with a monomeric PAM peptide that contains both the a1 and a2 motifs. The structure reveals how the PAM peptide forms key interactions simultaneously with two KR2 via the high-affinity lysine isosteres within the a1a2 motifs. Further studies, through combined mutagenesis and functional characterization, show that a2 is a stronger KR2 binder than a1, suggesting that these two motifs may play discrete roles in mediating the final PAM-Plg assembly.


Intrinsic limitations in mainstream methods of identifying network motifs in biology.

  • James Fodor‎ et al.
  • BMC bioinformatics‎
  • 2020‎

Network motifs are connectivity structures that occur with significantly higher frequency than chance, and are thought to play important roles in complex biological networks, for example in gene regulation, interactomes, and metabolomes. Network motifs may also become pivotal in the rational design and engineering of complex biological systems underpinning the field of synthetic biology. Distinguishing true motifs from arbitrary substructures, however, remains a challenge.


Mutational and biophysical robustness in a prestabilized monobody.

  • Peter G Chandler‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

The fibronectin type III (FN3) monobody domain is a promising non-antibody scaffold, which features a less complex architecture than an antibody while maintaining analogous binding loops. We previously developed FN3Con, a hyperstable monobody derivative with diagnostic and therapeutic potential. Prestabilization of the scaffold mitigates the stability-function trade-off commonly associated with evolving a protein domain toward biological activity. Here, we aimed to examine if the FN3Con monobody could take on antibody-like binding to therapeutic targets, while retaining its extreme stability. We targeted the first of the Adnectin derivative of monobodies to reach clinical trials, which was engineered by directed evolution for binding to the therapeutic target VEGFR2; however, this function was gained at the expense of large losses in thermostability and increased oligomerization. In order to mitigate these losses, we grafted the binding loops from Adnectin-anti-VEGFR2 (CT-322) onto the prestabilized FN3Con scaffold to produce a domain that successfully bound with high affinity to the therapeutic target VEGFR2. This FN3Con-anti-VEGFR2 construct also maintains high thermostability, including remarkable long-term stability, retaining binding activity after 2 years of storage at 36 °C. Further investigations into buffer excipients doubled the presence of monomeric monobody in accelerated stability trials. These data suggest that loop grafting onto a prestabilized scaffold is a viable strategy for the development of monobody domains with desirable biophysical characteristics and that FN3Con is therefore well-suited to applications such as the evolution of multiple paratopes or shelf-stable diagnostics and therapeutics.


Crystal structure of TcpK in complex with oriT DNA of the antibiotic resistance plasmid pCW3.

  • Daouda A K Traore‎ et al.
  • Nature communications‎
  • 2018‎

Conjugation is fundamental for the acquisition of new genetic traits and the development of antibiotic resistance in pathogenic organisms. Here, we show that a hypothetical Clostridium perfringens protein, TcpK, which is encoded by the tetracycline resistance plasmid pCW3, is essential for efficient conjugative DNA transfer. Our studies reveal that TcpK is a member of the winged helix-turn-helix (wHTH) transcription factor superfamily and that it forms a dimer in solution. Furthermore, TcpK specifically binds to a nine-nucleotide sequence that is present as tandem repeats within the pCW3 origin of transfer (oriT). The X-ray crystal structure of the TcpK-TcpK box complex reveals a binding mode centered on and around the β-wing, which is different from what has been previously shown for other wHTH proteins. Structure-guided mutagenesis experiments validate the specific interaction between TcpK and the DNA molecule. Additional studies highlight that the TcpK dimer is important for specific DNA binding.


Structural and dynamic properties that govern the stability of an engineered fibronectin type III domain.

  • Benjamin T Porebski‎ et al.
  • Protein engineering, design & selection : PEDS‎
  • 2015‎

Consensus protein design is a rapid and reliable technique for the improvement of protein stability, which relies on the use of homologous protein sequences. To enhance the stability of a fibronectin type III (FN3) domain, consensus design was employed using an alignment of 2123 sequences. The resulting FN3 domain, FN3con, has unprecedented stability, with a melting temperature >100°C, a ΔG(D-N) of 15.5 kcal mol(-1) and a greatly reduced unfolding rate compared with wild-type. To determine the underlying molecular basis for stability, an X-ray crystal structure of FN3con was determined to 2.0 Å and compared with other FN3 domains of varying stabilities. The structure of FN3con reveals significantly increased salt bridge interactions that are cooperatively networked, and a highly optimized hydrophobic core. Molecular dynamics simulations of FN3con and comparison structures show the cooperative power of electrostatic and hydrophobic networks in improving FN3con stability. Taken together, our data reveal that FN3con stability does not result from a single mechanism, but rather the combination of several features and the removal of non-conserved, unfavorable interactions. The large number of sequences employed in this study has most likely enhanced the robustness of the consensus design, which is now possible due to the increased sequence availability in the post-genomic era. These studies increase our knowledge of the molecular mechanisms that govern stability and demonstrate the rising potential for enhancing stability via the consensus method.


The Pu.1 target gene Zbtb11 regulates neutrophil development through its integrase-like HHCC zinc finger.

  • Maria-Cristina Keightley‎ et al.
  • Nature communications‎
  • 2017‎

In response to infection and injury, the neutrophil population rapidly expands and then quickly re-establishes the basal state when inflammation resolves. The exact pathways governing neutrophil/macrophage lineage outputs from a common granulocyte-macrophage progenitor are still not completely understood. From a forward genetic screen in zebrafish, we identify the transcriptional repressor, ZBTB11, as critical for basal and emergency granulopoiesis. ZBTB11 sits in a pathway directly downstream of master myeloid regulators including PU.1, and TP53 is one direct ZBTB11 transcriptional target. TP53 repression is dependent on ZBTB11 cys116, which is a functionally critical, metal ion-coordinating residue within a novel viral integrase-like zinc finger domain. To our knowledge, this is the first description of a function for this domain in a cellular protein. We demonstrate that the PU.1-ZBTB11-TP53 pathway is conserved from fish to mammals. Finally, Zbtb11 mutant rescue experiments point to a ZBTB11-regulated TP53 requirement in development of other organs.


Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V.

  • Sarah C Atkinson‎ et al.
  • Scientific reports‎
  • 2018‎

Hendra virus (HeV) is a paramyxovirus that causes lethal disease in humans, for which no vaccine or antiviral agent is available. HeV V protein is central to pathogenesis through its ability to interact with cytoplasmic host proteins, playing key antiviral roles. Here we use immunoprecipitation, siRNA knockdown and confocal laser scanning microscopy to show that HeV V shuttles to and from the nucleus through specific host nuclear transporters. Spectroscopic and small angle X-ray scattering studies reveal HeV V undergoes a disorder-to-order transition upon binding to either importin α/β1 or exportin-1/Ran-GTP, dependent on the V N-terminus. Importantly, we show that specific inhibitors of nuclear transport prevent interaction with host transporters, and reduce HeV infection. These findings emphasize the critical role of host-virus interactions in HeV infection, and potential use of compounds targeting nuclear transport, such as the FDA-approved agent ivermectin, as anti-HeV agents.


Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine.

  • Sarah C Atkinson‎ et al.
  • PloS one‎
  • 2012‎

Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608-621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a 'back-to-back' dimer of dimers compared to the 'head-to-head' architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a 'back-to-back' homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study.


REFOLD: an analytical database of protein refolding methods.

  • Michelle K M Chow‎ et al.
  • Protein expression and purification‎
  • 2006‎

The expression and harvesting of proteins from insoluble inclusion bodies by solubilization and refolding is a technique commonly used in the production of recombinant proteins. To bring clarity to the large and widespread quantity of published protein refolding data, we have recently established the REFOLD database (http://refold.med.monash.edu.au), which is a freely available, open repository for protocols describing the refolding and purification of recombinant proteins. Refolding methods are currently published in many different formats and resources--REFOLD provides a standardized system for the structured reporting and presentation of these data. Furthermore, data in REFOLD are readily accessible using a simple search function, and the database also enables analyses which identify and highlight particular trends between suitable refolding and purification conditions and specific protein properties. This information may in turn serve to facilitate the rational design and development of new refolding protocols for novel proteins. There are approximately 200 proteins currently listed in REFOLD, and it is anticipated that with the continued contribution of data by researchers this number will grow significantly, thus strengthening the emerging trends and patterns and making this database a valuable tool for the scientific community.


The REFOLD database: a tool for the optimization of protein expression and refolding.

  • Michelle K M Chow‎ et al.
  • Nucleic acids research‎
  • 2006‎

A large proportion of proteins expressed in Escherichia coli form inclusion bodies and thus require renaturation to attain a functional conformation for analysis. In this process, identifying and optimizing the refolding conditions and methodology is often rate limiting. In order to address this problem, we have developed REFOLD, a web-accessible relational database containing the published methods employed in the refolding of recombinant proteins. Currently, REFOLD contains >300 entries, which are heavily annotated such that the database can be searched via multiple parameters. We anticipate that REFOLD will continue to grow and eventually become a powerful tool for the optimization of protein renaturation. REFOLD is freely available at http://refold.med.monash.edu.au.


The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions.

  • Christopher G Langendorf‎ et al.
  • PloS one‎
  • 2010‎

In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and gamma-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells.


A colostrum trypsin inhibitor gene expressed in the Cape fur seal mammary gland during lactation.

  • Elizabeth A Pharo‎ et al.
  • Gene‎
  • 2016‎

The colostrum trypsin inhibitor (CTI) gene and transcript were cloned from the Cape fur seal mammary gland and CTI identified by in silico analysis of the Pacific walrus and polar bear genomes (Order Carnivora), and in marine and terrestrial mammals of the Orders Cetartiodactyla (yak, whales, camel) and Perissodactyla (white rhinoceros). Unexpectedly, Weddell seal CTI was predicted to be a pseudogene. Cape fur seal CTI was expressed in the mammary gland of a pregnant multiparous seal, but not in a seal in its first pregnancy. While bovine CTI is expressed for 24-48 h postpartum (pp) and secreted in colostrum only, Cape fur seal CTI was detected for at least 2-3 months pp while the mother was suckling its young on-shore. Furthermore, CTI was expressed in the mammary gland of only one of the lactating seals that was foraging at-sea. The expression of β-casein (CSN2) and β-lactoglobulin II (LGB2), but not CTI in the second lactating seal foraging at-sea suggested that CTI may be intermittently expressed during lactation. Cape fur seal and walrus CTI encode putative small, secreted, N-glycosylated proteins with a single Kunitz/bovine pancreatic trypsin inhibitor (BPTI) domain indicative of serine protease inhibition. Mature Cape fur seal CTI shares 92% sequence identity with Pacific walrus CTI, but only 35% identity with BPTI. Structural homology modelling of Cape fur seal CTI and Pacific walrus trypsin based on the model of the second Kunitz domain of human tissue factor pathway inhibitor (TFPI) and porcine trypsin (Protein Data Bank: 1TFX) confirmed that CTI inhibits trypsin in a canonical fashion. Therefore, pinniped CTI may be critical for preventing the proteolytic degradation of immunoglobulins that are passively transferred from mother to young via colostrum and milk.


Eosinophil peroxidase activates cells by HER2 receptor engagement and β1-integrin clustering with downstream MAPK cell signaling.

  • Kerrie Hennigan‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2016‎

Eosinophils account for 1-3% of peripheral blood leukocytes and accumulate at sites of allergic inflammation, where they play a pathogenic role. Studies have shown that treatment with mepolizumab (an anti-IL-5 monoclonal antibody) is beneficial to patients with severe eosinophilic asthma, however, the mechanism of precisely how eosinophils mediate these pathogenic effects is uncertain. Eosinophils contain several cationic granule proteins, including Eosinophil Peroxidase (EPO). The main significance of this work is the discovery of EPO as a novel ligand for the HER2 receptor. Following HER2 activation, EPO induces activation of FAK and subsequent activation of β1-integrin, via inside-out signaling. This complex results in downstream activation of ERK1/2 and a sustained up regulation of both MUC4 and the HER2 receptor. These data identify a receptor for one of the eosinophil granule proteins and demonstrate a potential explanation of the proliferative effects of eosinophils.


Anti-CDCP1 immuno-conjugates for detection and inhibition of ovarian cancer.

  • Brittney S Harrington‎ et al.
  • Theranostics‎
  • 2020‎

CUB-domain containing protein 1 (CDCP1) is a cancer associated cell surface protein that amplifies pro-tumorigenic signalling by other receptors including EGFR and HER2. Its potential as a cancer target is supported by studies showing that anti-CDCP1 antibodies inhibit cell migration and survival in vitro, and tumor growth and metastasis in vivo. Here we characterize two anti-CDCP1 antibodies, focusing on immuno-conjugates of one of these as a tool to detect and inhibit ovarian cancer. Methods: A panel of ovarian cancer cell lines was examined for cell surface expression of CDCP1 and loss of expression induced by anti-CDCP1 antibodies 10D7 and 41-2 using flow cytometry and Western blot analysis. Surface plasmon resonance analysis and examination of truncation mutants was used to analyse the binding properties of the antibodies for CDCP1. Live-cell spinning-disk confocal microscopy of GFP-tagged CDCP1 was used to track internalization and intracellular trafficking of CDCP1/antibody complexes. In vivo, zirconium 89-labelled 10D7 was detected by positron-emission tomography imaging, of an ovarian cancer patient-derived xenograft grown intraperitoneally in mice. The efficacy of cytotoxin-conjugated 10D7 was examined against ovarian cancer cells in vitro and in vivo. Results: Our data indicate that each antibody binds with high affinity to the extracellular domain of CDCP1 causing rapid internalization of the receptor/antibody complex and degradation of CDCP1 via processes mediated by the kinase Src. Highlighting the potential clinical utility of CDCP1, positron-emission tomography imaging, using zirconium 89-labelled 10D7, was able to detect subcutaneous and intraperitoneal xenograft ovarian cancers in mice, including small (diameter <3 mm) tumor deposits of an ovarian cancer patient-derived xenograft grown intraperitoneally in mice. Furthermore, cytotoxin-conjugated 10D7 was effective at inhibiting growth of CDCP1-expressing ovarian cancer cells in vitro and in vivo. Conclusions: These data demonstrate that CDCP1 internalizing antibodies have potential for killing and detection of CDCP1 expressing ovarian cancer cells.


The cryo-EM structure of the acid activatable pore-forming immune effector Macrophage-expressed gene 1.

  • Siew Siew Pang‎ et al.
  • Nature communications‎
  • 2019‎

Macrophage-expressed gene 1 (MPEG1/Perforin-2) is a perforin-like protein that functions within the phagolysosome to damage engulfed microbes. MPEG1 is thought to form pores in target membranes, however, its mode of action remains unknown. We use cryo-Electron Microscopy (cryo-EM) to determine the 2.4 Å structure of a hexadecameric assembly of MPEG1 that displays the expected features of a soluble prepore complex. We further discover that MPEG1 prepore-like assemblies can be induced to perforate membranes through acidification, such as would occur within maturing phagolysosomes. We next solve the 3.6 Å cryo-EM structure of MPEG1 in complex with liposomes. These data reveal that a multi-vesicular body of 12 kDa (MVB12)-associated β-prism (MABP) domain binds membranes such that the pore-forming machinery of MPEG1 is oriented away from the bound membrane. This unexpected mechanism of membrane interaction suggests that MPEG1 remains bound to the phagolysosome membrane while simultaneously forming pores in engulfed bacterial targets.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: