Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

Computational analysis of liquid chromatography-tandem mass spectrometric steroid profiling in NCI H295R cells following angiotensin II, forskolin and abiraterone treatment.

  • Anastasios Mangelis‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2016‎

Adrenal steroid hormones, which regulate a plethora of physiological functions, are produced via tightly controlled pathways. Investigations of these pathways, based on experimental data, can be facilitated by computational modeling for calculations of metabolic rate alterations. We therefore used a model system, based on mass balance and mass reaction equations, to kinetically evaluate adrenal steroidogenesis in human adrenal cortex-derived NCI H295R cells. For this purpose a panel of 10 steroids was measured by liquid chromatographic-tandem mass spectrometry. Time-dependent changes in cell incubate concentrations of steroids - including cortisol, aldosterone, dehydroepiandrosterone and their precursors - were measured after incubation with angiotensin II, forskolin and abiraterone. Model parameters were estimated based on experimental data using weighted least square fitting. Time-dependent angiotensin II- and forskolin-induced changes were observed for incubate concentrations of precursor steroids with peaks that preceded maximal increases in aldosterone and cortisol. Inhibition of 17-alpha-hydroxylase/17,20-lyase with abiraterone resulted in increases in upstream precursor steroids and decreases in downstream products. Derived model parameters, including rate constants of enzymatic processes, appropriately quantified observed and expected changes in metabolic pathways at multiple conversion steps. Our data demonstrate limitations of single time point measurements and the importance of assessing pathway dynamics in studies of adrenal cortical cell line steroidogenesis. Our analysis provides a framework for evaluation of steroidogenesis in adrenal cortical cell culture systems and demonstrates that computational modeling-derived estimates of kinetic parameters are an effective tool for describing perturbations in associated metabolic pathways.


Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor.

  • Carolin Schwafertz‎ et al.
  • Molecular and cellular endocrinology‎
  • 2017‎

Endothelial cell-derived products influence the synthesis of aldosterone and cortisol in human adrenocortical cells by modulating proteins such as steroidogenic acute-regulatory (StAR) protein, steroidogenic factor (SF)-1 and CITED2. However, the potential endothelial cell-derived factors that mediate this effect are still unknown. The current study was perfomed to look into the control of β-catenin activity by endothelial cell-derived factors and to identify a mechanism by which they affect β-catenin activity in adrenocortical NCIH295R cells. Using reporter gene assays and Western blotting, we found that endothelial cell-conditioned medium (ECCM) led to nuclear translocation of β-catenin and an increase in β-catenin-dependent transcription that could be blocked by U0126, an inhibitor of the mitogen-activated protein kinase pathway. Furthermore, we found that a receptor tyrosin kinase (RTK) was involved in ECCM-induced β-catenin-dependent transcription. Through selective inhibition of RTK using Su5402, it was shown that receptors responding to basic fibroblast growth factor (bFGF) mediate the action of ECCM. Adrenocortical cells treated with bFGF showed a significant greater level of bFGF mRNA. In addition, HUVECs secrete bFGF in a density-dependent manner. In conclusion, the data suggest that endothelial cells regulate β-catenin activity in adrenocortical cells also via secretion of basic fibroblast growth factor.


Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals.

  • Wilhelm Palm‎ et al.
  • PLoS biology‎
  • 2013‎

Hedgehog (Hh) proteins control animal development and tissue homeostasis. They activate gene expression by regulating processing, stability, and activation of Gli/Cubitus interruptus (Ci) transcription factors. Hh proteins are secreted and spread through tissue, despite becoming covalently linked to sterol during processing. Multiple mechanisms have been proposed to release Hh proteins in distinct forms; in Drosophila, lipoproteins facilitate long-range Hh mobilization but also contain lipids that repress the pathway. Here, we show that mammalian lipoproteins have conserved roles in Sonic Hedgehog (Shh) release and pathway repression. We demonstrate that lipoprotein-associated forms of Hh and Shh specifically block lipoprotein-mediated pathway inhibition. We also identify a second conserved release form that is not sterol-modified and can be released independently of lipoproteins (Hh-N*/Shh-N*). Lipoprotein-associated Hh/Shh and Hh-N*/Shh-N* have complementary and synergistic functions. In Drosophila wing imaginal discs, lipoprotein-associated Hh increases the amount of full-length Ci, but is insufficient for target gene activation. However, small amounts of non-sterol-modified Hh synergize with lipoprotein-associated Hh to fully activate the pathway and allow target gene expression. The existence of Hh secretion forms with distinct signaling activities suggests a novel mechanism for generating a diversity of Hh responses.


Targeting Cyclooxygenase-2 in Pheochromocytoma and Paraganglioma: Focus on Genetic Background.

  • Martin Ullrich‎ et al.
  • Cancers‎
  • 2019‎

Cyclooxygenase 2 (COX-2) is a key enzyme of the tumorigenesis-inflammation interface and can be induced by hypoxia. A pseudohypoxic transcriptional signature characterizes pheochromocytomas and paragangliomas (PPGLs) of the cluster I, mainly represented by tumors with mutations in von Hippel-Lindau (VHL), endothelial PAS domain-containing protein 1 (EPAS1), or succinate dehydrogenase (SDH) subunit genes. The aim of this study was to investigate a possible association between underlying tumor driver mutations and COX-2 in PPGLs. COX-2 gene expression and immunoreactivity were examined in clinical specimens with documented mutations, as well as in spheroids and allografts derived from mouse pheochromocytoma (MPC) cells. COX-2 in vivo imaging was performed in allograft mice. We observed significantly higher COX-2 expression in cluster I, especially in VHL-mutant PPGLs, however, no specific association between COX-2 mRNA levels and a hypoxia-related transcriptional signature was found. COX-2 immunoreactivity was present in about 60% of clinical specimens as well as in MPC spheroids and allografts. A selective COX-2 tracer specifically accumulated in MPC allografts. This study demonstrates that, although pseudohypoxia is not the major determinant for high COX-2 levels in PPGLs, COX-2 is a relevant molecular target. This potentially allows for employing selective COX-2 inhibitors as targeted chemotherapeutic agents and radiosensitizers. Moreover, available models are suitable for preclinical testing of these treatments.


Adrenal Hormone Interactions and Metabolism: A Single Sample Multi-Omics Approach.

  • Nicole Bechmann‎ et al.
  • Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme‎
  • 2021‎

The adrenal gland is important for many physiological and pathophysiological processes, but studies are often restricted by limited availability of sample material. Improved methods for sample preparation are needed to facilitate analyses of multiple classes of adrenal metabolites and macromolecules in a single sample. A procedure was developed for preparation of chromaffin cells, mouse adrenals, and human chromaffin tumors that allows for multi-omics analyses of different metabolites and preservation of native proteins. To evaluate the new procedure, aliquots of samples were also prepared using conventional procedures. Metabolites were analyzed by liquid-chromatography with mass spectrometry or electrochemical detection. Metabolite contents of chromaffin cells and tissues analyzed with the new procedure were similar or even higher than with conventional methods. Catecholamine contents were comparable between both procedures. The TCA cycle metabolites, cis-aconitate, isocitate, and α-ketoglutarate were detected at higher concentrations in cells, while in tumor tissue only isocitrate and potentially fumarate were measured at higher contents. In contrast, in a broad untargeted metabolomics approach, a methanol-based preparation procedure of adrenals led to a 1.3-fold higher number of detected metabolites. The established procedure also allows for simultaneous investigation of adrenal hormones and related enzyme activities as well as proteins within a single sample. This novel multi-omics approach not only minimizes the amount of sample required and overcomes problems associated with tissue heterogeneity, but also provides a more complete picture of adrenal function and intra-adrenal interactions than previously possible.


HIF1α is a direct regulator of steroidogenesis in the adrenal gland.

  • Deepika Watts‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2021‎

Endogenous steroid hormones, especially glucocorticoids and mineralocorticoids, derive from the adrenal cortex, and drastic or sustained changes in their circulatory levels affect multiple organ systems. Although hypoxia signaling in steroidogenesis has been suggested, knowledge on the true impact of the HIFs (Hypoxia-Inducible Factors) in the adrenocortical cells of vertebrates is scant. By creating a unique set of transgenic mouse lines, we reveal a prominent role for HIF1α in the synthesis of virtually all steroids in vivo. Specifically, mice deficient in HIF1α in adrenocortical cells displayed enhanced levels of enzymes responsible for steroidogenesis and a cognate increase in circulatory steroid levels. These changes resulted in cytokine alterations and changes in the profile of circulatory mature hematopoietic cells. Conversely, HIF1α overexpression resulted in the opposite phenotype of insufficient steroid production due to impaired transcription of necessary enzymes. Based on these results, we propose HIF1α to be a vital regulator of steroidogenesis as its modulation in adrenocortical cells dramatically impacts hormone synthesis with systemic consequences. In addition, these mice can have potential clinical significances as they may serve as essential tools to understand the pathophysiology of hormone modulations in a number of diseases associated with metabolic syndrome, auto-immunity or even cancer.


Significant Benefits of AIP Testing and Clinical Screening in Familial Isolated and Young-onset Pituitary Tumors.

  • Pedro Marques‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2020‎

Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs).


Metastatic pheochromocytoma and paraganglioma: Somatostatin receptor 2 expression, genetics and therapeutic responses.

  • Alessa Fischer‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2023‎

Pheochromocytomas/paragangliomas (PPGLs) with pathogenic mutations in the succinate dehydrogenase subunit B (SDHB) are associated with a high metastatic risk. Somatostatin receptor 2 (SSTR2)-dependent imaging is the most sensitive imaging modality for SDHB-related PPGLs, suggesting that SSTR2 expression is a significant cell surface therapeutic biomarker of such tumors.


The impact of mitotane therapy on serum-free proteins in patients with adrenocortical carcinoma.

  • Magdalena Lech‎ et al.
  • Endocrine connections‎
  • 2024‎

Adrenocortical carcinoma (ACC) is a rare malignancy of the adrenal cortex. Whilst surgery is the preferred treatment, adjunctive therapy with mitotane may be offered post-surgically to minimise the risk of recurrence or, in the absence of surgery, to attenuate progression.


GLP-1 and PYY for the treatment of obesity: a pilot study on the use of agonists and antagonists in diet-induced rats.

  • Marie Oertel‎ et al.
  • Endocrine connections‎
  • 2024‎

Combination therapies with gut hormone analogs represent promising treatment strategies for obesity. This pilot study investigates the therapeutic potential of modulators of the glucagon-like peptide 1 (GLP-1) and neuropeptide Y (NPY) system using GLP-1 receptor agonists (semaglutide) and antagonists (exendin 9-39), as well as non-selective and NPY-Y2-receptor selective peptide tyrosine tyrosine (PYY) analogs (PYY3-36/NNC0165-0020 and NNC0165-1273) and an NPY-Y2 receptor antagonist (JNJ31020028).


Multimodal Somatostatin Receptor Theranostics Using [(64)Cu]Cu-/[(177)Lu]Lu-DOTA-(Tyr(3))octreotate and AN-238 in a Mouse Pheochromocytoma Model.

  • Martin Ullrich‎ et al.
  • Theranostics‎
  • 2016‎

Pheochromocytomas and extra-adrenal paragangliomas (PHEO/PGLs) are rare catecholamine-producing chromaffin cell tumors. For metastatic disease, no effective therapy is available. Overexpression of somatostatin type 2 receptors (SSTR2) in PHEO/PGLs promotes interest in applying therapies using somatostatin analogs linked to radionuclides and/or cytotoxic compounds, such as [(177)Lu]Lu-DOTA-(Tyr(3))octreotate (DOTATATE) and AN-238. Systematic evaluation of such therapies for the treatment of PHEO/PGLs requires sophisticated animal models. In this study, the mouse pheochromocytoma (MPC)-mCherry allograft model showed high tumor densities of murine SSTR2 (mSSTR2) and high tumor uptake of [(64)Cu]Cu-DOTATATE. Using tumor sections, we assessed mSSTR2-specific binding of DOTATATE, AN-238, and somatostatin-14. Therapeutic studies showed substantial reduction of tumor growth and tumor-related renal monoamine excretion in tumor-bearing mice after treatment with [(177)Lu]Lu-DOTATATE compared to AN-238 and doxorubicin. Analyses did not show agonist-dependent receptor downregulation after single mSSTR2-targeting therapies. This study demonstrates that the MPC-mCherry model is a uniquely powerful tool for the preclinical evaluation of SSTR2-targeting theranostic applications in vivo. Our findings highlight the therapeutic potential of somatostatin analogs, especially of [(177)Lu]Lu-DOTATATE, for the treatment of metastatic PHEO/PGLs. Repeated treatment cycles, fractionated combinations of SSTR2-targeting radionuclide and cytotoxic therapies, and other adjuvant compounds addressing additional mechanisms may further enhance therapeutic outcome.


Morphology, Biochemistry, and Pathophysiology of MENX-Related Pheochromocytoma Recapitulate the Clinical Features.

  • Tobias Wiedemann‎ et al.
  • Endocrinology‎
  • 2016‎

Pheochromocytomas (PCCs) are tumors arising from neural crest-derived chromaffin cells. There are currently few animal models of PCC that recapitulate the key features of human tumors. Because such models may be useful for investigations of molecular pathomechanisms and development of novel therapeutic interventions, we characterized a spontaneous animal model (multiple endocrine neoplasia [MENX] rats) that develops endogenous PCCs with complete penetrance. Urine was longitudinally collected from wild-type (wt) and MENX-affected (mutant) rats and outputs of catecholamines and their O-methylated metabolites determined by mass spectrometry. Adrenal catecholamine contents, cellular ultrastructure, and expression of phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine, were also determined in wt and mutant rats. Blood pressure was longitudinally measured and end-organ pathology assessed. Compared with wt rats, mutant animals showed age-dependent increases in urinary outputs of norepinephrine (P = .0079) and normetanephrine (P = .0014) that correlated in time with development of tumor nodules, increases in blood pressure, and development of hypertension-related end-organ pathology. Development of tumor nodules, which lacked expression of N-methyltransferase, occurred on a background of adrenal medullary morphological and biochemical changes occurring as early as 1 month of age and involving increased adrenal medullary concentrations of dense cored vesicles, tissue contents of both norepinephrine and epinephrine, and urinary outputs of metanephrine, the metabolite of epinephrine. Taken together, MENX-affected rats share several biochemical and pathophysiological features with PCC patients. This model thus provides a suitable platform to study the pathogenesis of PCC for preclinical translational studies aimed at the development of novel therapies for aggressive forms of human tumors.


Chromogranin A as potential target for immunotherapy of malignant pheochromocytoma.

  • Claudia Papewalis‎ et al.
  • Molecular and cellular endocrinology‎
  • 2011‎

Currently, no effective treatment for malignant pheochromocytoma exists. The aim of our study was to investigate the role of chromogranin A (CgA) as a specific target molecule for immunotherapy in a murine model for pheochromocytoma. Six amino acid-modified and non-modified CgA peptides were used for dendritic cell vaccination. Altogether, 50 mice received two different CgA vaccination protocols; another 20 animals served as controls. In vitro tetramer analyses revealed large increases of CgA-specific cytotoxic T cells (CTL) in CgA-treated mice. Tumors of exogenous applied pheochromocytoma cells showed an extensive infiltration by CD8+ T cells. In vitro, CTL of CgA-treated mice exhibited strong MHC I restricted lysis capacities towards pheochromocytoma cells. Importantly, these mice showed strongly diminished outgrowth of liver tumors of applied pheochromocytoma cells. Our data clearly demonstrate that CgA peptide-based immunotherapy induces a cytotoxic immune response in experimental pheochromocytoma, indicating potential for therapeutic applications in patients with malignant pheochromocytoma.


Endothelial factors mediate aldosterone release via PKA-independent pathways.

  • Ishrath Ansurudeen‎ et al.
  • Molecular and cellular endocrinology‎
  • 2009‎

Aldosterone synthesis is primarily regulated by angiotensin II and potassium ions. In addition, endothelial cell-secreted factors have been shown to regulate mineralocorticoid release. We analyzed the pathways that mediate endothelial cell-factor-induced aldosterone release from adrenocortical cells, NCI-H295R using endothelial cell-conditioned medium (ECM). The cAMP antagonist Rp-cAMP caused a 44% decrease in the ECM-induced aldosterone release but inhibition of cAMP-dependent PKA had no effect on aldosterone release. Interestingly, inhibition of cAMP-regulated guanine nucleotide exchange factor Epac with brefeldin-A decreased the ECM-induced aldosterone release by 45%. Similarly, inhibition of p38 MAP-kinase; PI-3-kinase and PKB significantly reduced the ECM-induced aldosterone release whereas inhibition of ERK1/2 and PKC did not decrease aldosterone release. These results provide evidence for the existence of a cAMP-dependent but PKA-independent pathway in mediating the ECM-induced aldosterone release and the significant influence of more than one signaling mechanism.


Insulin gene polymorphisms in type 1 diabetes, Addison's disease and the polyglandular autoimmune syndrome type II.

  • Elizabeth Ramos-Lopez‎ et al.
  • BMC medical genetics‎
  • 2008‎

Polymorphisms within the insulin gene can influence insulin expression in the pancreas and especially in the thymus, where self-antigens are processed, shaping the T cell repertoire into selftolerance, a process that protects from beta-cell autoimmunity.


Endothelial cell-mediated regulation of aldosterone release from human adrenocortical cells.

  • Ishrath Ansurudeen‎ et al.
  • Molecular and cellular endocrinology‎
  • 2007‎

Endothelial cells play an important role in the development and functioning of endocrine tissue and endothelial cell-derived factors have been shown to regulate mineralocorticoid release in bovine adrenal cells. In the present study, we analysed the role of human endothelial cells in the synthesis and release of aldosterone from adrenocortical cells (NCI-H295R). Endothelial cell-induced aldosterone release was rapid and lasted as a long-term effect over a period of 48 h. This stimulant effect was influenced by the duration of endothelial cell conditioning and decreased linearly with increasing dilutions of the conditioned medium. At the molecular level, an increase in the mRNA transcripts of aldosterone synthase and StAR could be observed. Cellular interaction with endothelial cell-factors enhanced the activation of CRE, and the promoter activity of both StAR and SF-1 reporter genes. In conclusion, human endothelial cells are important intra-adrenal regulators of human aldosterone synthesis and release.


Differential expression and action of Toll-like receptors in human adrenocortical cells.

  • Waldemar Kanczkowski‎ et al.
  • Molecular and cellular endocrinology‎
  • 2009‎

During sepsis, an intact adrenal gland glucocorticoid stress response is critical for survival. Recently, we have shown that Toll-like receptors, particularly TLR2 and TLR4, are crucial in HPA axis regulation following inflammation, establishing a direct link between bacterial and viral ligands and the endocrine stress response. However, the exact role which TLRs play in adrenal homeostasis and malfunction is not yet sufficiently known. Using quantitative real-time PCR, confocal microscopy and the NF-kappaB reporter gene assay, we aimed to analyse both, expression and function of all relevant TLRs in the human adrenocortical cell line-NCI-H295R and adrenal cells in primary culture. Our results demonstrate a differential expression pattern of TLR1-9 in human adrenocortical cells as compared to immune cells and adrenocortical cancer cells. Consequently, activation of these cells by bacterial ligands leads to differential induction of cytokines including IL6, IL8 and TNF-alpha. Therefore, Toll-like receptors expression and function is a novel feature of the adrenal stress system contributing to adrenal tissue homeostasis, regeneration and tumorigenesis.


Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches.

  • Laura Gieldon‎ et al.
  • Cancers‎
  • 2019‎

Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine tumors with a strong hereditary background and a large genetic heterogeneity. Identification of the underlying genetic cause is crucial for the management of patients and their families as it aids differentiation between hereditary and sporadic cases. To improve diagnostics and clinical management we tailored an enrichment based comprehensive multi-gene next generation sequencing panel applicable to both analyses of tumor tissue and blood samples. We applied this panel to tumor samples and compared its performance to our current routine diagnostic approach. Routine diagnostic sequencing of 11 PPGL susceptibility genes was applied to blood samples of 65 unselected PPGL patients at a single center in Dresden, Germany. Predisposing germline mutations were identified in 19 (29.2%) patients. Analyses of 28 PPGL tumor tissues using the dedicated PPGL panel revealed pathogenic or likely pathogenic variants in known PPGL susceptibility genes in 21 (75%) cases, including mutations in IDH2, ATRX and HRAS. These mutations suggest sporadic tumor development. Our results imply a diagnostic benefit from extended molecular tumor testing of PPGLs and consequent improvement of patient management. The approach is promising for determination of prognostic biomarkers that support therapeutic decision-making.


Impact of Extrinsic and Intrinsic Hypoxia on Catecholamine Biosynthesis in Absence or Presence of Hif2α in Pheochromocytoma Cells.

  • Nicole Bechmann‎ et al.
  • Cancers‎
  • 2019‎

Pheochromocytomas and paragangliomas (PPGLs) with activated pseudohypoxic pathways are associated with an immature catecholamine phenotype and carry a higher risk for metastasis. For improved understanding of the underlying mechanisms we investigated the impact of hypoxia and pseudohypoxia on catecholamine biosynthesis in pheochromocytoma cells naturally lacking Hif2α (MPC and MTT) or expressing both Hif1α and Hif2α (PC12). Cultivation under extrinsic hypoxia or in spheroid culture (intrinsic hypoxia) increased cellular dopamine and norepinephrine contents in all cell lines. To distinguish further between Hif1α- and Hif2α-driven effects we expressed Hif2α in MTT and MPC-mCherry cells (naturally lacking Hif2α). Presence of Hif2α resulted in similarly increased cellular dopamine and norepinephrine under hypoxia as in the control cells. Furthermore, hypoxia resulted in enhanced phosphorylation of tyrosine hydroxylase (TH). A specific knockdown of Hif1α in PC12 diminished these effects. Pseudohypoxic conditions, simulated by expression of Hif2α under normoxia resulted in increased TH phosphorylation, further stimulated by extrinsic hypoxia. Correlations with PPGL tissue data led us to conclude that catecholamine biosynthesis under hypoxia is mainly mediated through increased phosphorylation of TH, regulated as a short-term response (24-48 h) by HIF1α. Continuous activation of hypoxia-related genes under pseudohypoxia leads to a HIF2α-mediated phosphorylation of TH (permanent status).


Express Method for Isolation of Ready-to-Use 3D Chitin Scaffolds from Aplysina archeri (Aplysineidae: Verongiida) Demosponge.

  • Christine Klinger‎ et al.
  • Marine drugs‎
  • 2019‎

Sponges are a valuable source of natural compounds and biomaterials for many biotechnological applications. Marine sponges belonging to the order Verongiida are known to contain both chitin and biologically active bromotyrosines. Aplysina archeri (Aplysineidae: Verongiida) is well known to contain bromotyrosines with relevant bioactivity against human and animal diseases. The aim of this study was to develop an express method for the production of naturally prefabricated 3D chitin and bromotyrosine-containing extracts simultaneously. This new method is based on microwave irradiation (MWI) together with stepwise treatment using 1% sodium hydroxide, 20% acetic acid, and 30% hydrogen peroxide. This approach, which takes up to 1 h, made it possible to isolate chitin from the tube-like skeleton of A. archeri and to demonstrate the presence of this biopolymer in this sponge for the first time. Additionally, this procedure does not deacetylate chitin to chitosan and enables the recovery of ready-to-use 3D chitin scaffolds without destruction of the unique tube-like fibrous interconnected structure of the isolated biomaterial. Furthermore, these mechanically stressed fibers still have the capacity for saturation with water, methylene blue dye, crude oil, and blood, which is necessary for the application of such renewable 3D chitinous centimeter-sized scaffolds in diverse technological and biomedical fields.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: