Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline.

  • Tyler J Bussian‎ et al.
  • Nature‎
  • 2018‎

Cellular senescence, which is characterized by an irreversible cell-cycle arrest1 accompanied by a distinctive secretory phenotype2, can be induced through various intracellular and extracellular factors. Senescent cells that express the cell cycle inhibitory protein p16INK4A have been found to actively drive naturally occurring age-related tissue deterioration3,4 and contribute to several diseases associated with ageing, including atherosclerosis5 and osteoarthritis6. Various markers of senescence have been observed in patients with neurodegenerative diseases7-9; however, a role for senescent cells in the aetiology of these pathologies is unknown. Here we show a causal link between the accumulation of senescent cells and cognition-associated neuronal loss. We found that the MAPTP301SPS19 mouse model of tau-dependent neurodegenerative disease10 accumulates p16INK4A-positive senescent astrocytes and microglia. Clearance of these cells as they arise using INK-ATTAC transgenic mice prevents gliosis, hyperphosphorylation of both soluble and insoluble tau leading to neurofibrillary tangle deposition, and degeneration of cortical and hippocampal neurons, thus preserving cognitive function. Pharmacological intervention with a first-generation senolytic modulates tau aggregation. Collectively, these results show that senescent cells have a role in the initiation and progression of tau-mediated disease, and suggest that targeting senescent cells may provide a therapeutic avenue for the treatment of these pathologies.


L3MBTL2 orchestrates ubiquitin signalling by dictating the sequential recruitment of RNF8 and RNF168 after DNA damage.

  • Somaira Nowsheen‎ et al.
  • Nature cell biology‎
  • 2018‎

Cells respond to cytotoxic DNA double-strand breaks (DSBs) by recruiting DNA repair proteins to the damaged site. This recruitment is dependent on ubiquitylation of adjacent chromatin areas by E3 ubiquitin ligases such as RNF8 and RNF168, which are recruited sequentially to the DSBs. However, it is unclear what dictates the sequential order and recruits RNF168 to the DNA lesion. Here, we reveal that L3MBTL2 (lethal(3)malignant brain tumour-like protein 2) is the missing link between RNF8 and RNF168. We found that L3MBTL2 is recruited by MDC1 and subsequently ubiquitylated by RNF8. Ubiquitylated L3MBTL2, in turn, facilitates recruitment of RNF168 to the DNA lesion and promotes DNA DSB repair. These results identify L3MBTL2 as a key target of RNF8 following DNA damage and demonstrates how the DNA damage response pathway is orchestrated by ubiquitin signalling.


Serum progranulin levels are associated with frailty in middle-aged individuals.

  • Andrew D Nguyen‎ et al.
  • PloS one‎
  • 2020‎

A recent study identified progranulin as a candidate biomarker for frailty, based on gene expression databases. In the present study, we investigated associations between serum progranulin levels and frailty in a population-based sample of late middle-age and older adults.


The AMPK-Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome.

  • Seung Baek Lee‎ et al.
  • Nature cell biology‎
  • 2019‎

The receptor-interacting serine/threonine-protein kinases RIPK1 and RIPK3 play important roles in necroptosis that are closely linked to the inflammatory response. Although the activation of necroptosis is well characterized, the mechanism that tunes down necroptosis is largely unknown. Here we find that Parkin (also known as PARK2), an E3 ubiquitin ligase implicated in Parkinson's disease and as a tumour suppressor, regulates necroptosis and inflammation by regulating necrosome formation. Parkin prevents the formation of the RIPK1-RIPK3 complex by promoting polyubiquitination of RIPK3. Parkin is phosphorylated and activated by the cellular energy sensor AMP-activated protein kinase (AMPK). Parkin deficiency potentiates the RIPK1-RIPK3 interaction, RIPK3 phosphorylation and necroptosis. Parkin deficiency enhances inflammation and inflammation-associated tumorigenesis. These findings demonstrate that the AMPK-Parkin axis negatively regulates necroptosis by inhibiting RIPK1-RIPK3 complex formation; this regulation may serve as an important mechanism to fine-tune necroptosis and inflammation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: