Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Comparison of immunotoxicity among tetrachloro-, pentachloro-, tetrabromo- and pentabromo-dibenzo-p-dioxins in mice.

  • Kana Ao‎ et al.
  • Toxicology‎
  • 2009‎

There is concern about the growing environmental levels of brominated dioxins. Brominated dioxins are known to bind and activate the transcription factor aryl hydrocarbon receptor (AhR), as their chlorinated congeners do. However, data on the potency of brominated dioxins for immunotoxicity in vivo is largely lacking, even though the immune system is a vulnerable target for dioxins. In this study, we investigated the immunotoxic effects on mice of the brominated dioxins, 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) and 1,2,3,7,8-pentabromodibenzo-p-dioxin (PeBDD), in comparison with those of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), the two most toxic chlorinated dioxins, to gain insight into the potency of brominated dioxins for immunotoxicity. C57BL/6 mice were dosed with the dioxins and immunized with ovalbumin (OVA), and several endpoints that sensitively detect immunotoxicity were investigated, including IL-5 production by the splenocytes. The results of the present study demonstrated that TCDD and TBDD show identical effects on a per weight basis at 1.0-10mug/kg for all the endpoints examined. PeCDD also showed effects similar to those of TCDD. On the other hand, PeBDD showed somewhat dose-independent effects and was more potent at a lower dose and less potent at a higher dose than PeCDD. Dose-dependent linearity of PeBDD-induced induction of CYP1A1, an AhR target gene, was also less clear in the spleen than in the liver. These results have provided valuable data for estimating the potency of brominated dioxins for immunotoxicity.


Dioxin induces Ahr-dependent robust DNA demethylation of the Cyp1a1 promoter via Tdg in the mouse liver.

  • Hesbon Z Amenya‎ et al.
  • Scientific reports‎
  • 2016‎

The aryl hydrocarbon receptor (Ahr) is a highly conserved nuclear receptor that plays an important role in the manifestation of toxicity induced by polycyclic aromatic hydrocarbons. As a xenobiotic sensor, Ahr is involved in chemical biotransformation through activation of drug metabolizing enzymes. The activated Ahr cooperates with coactivator complexes to induce epigenetic modifications at target genes. Thus, it is conceivable that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent Ahr ligand, may elicit robust epigenetic changes in vivo at the Ahr target gene cytochrome P450 1a1 (Cyp1a1). A single dose of TCDD administered to adult mice induced Ahr-dependent CpG hypomethylation, changes in histone modifications, and thymine DNA glycosylase (Tdg) recruitment at the Cyp1a1 promoter in the liver within 24 hrs. These epigenetic changes persisted until 40 days post-TCDD treatment and there was Cyp1a1 mRNA hyperinduction upon repeat administration of TCDD at this time-point. Our demethylation assay using siRNA knockdown and an in vitro methylated plasmid showed that Ahr, Tdg, and the ten-eleven translocation methyldioxygenases Tet2 and Tet3 are required for the TCDD-induced DNA demethylation. These results provide novel evidence of Ahr-driven active DNA demethylation and epigenetic memory. The epigenetic alterations influence response to subsequent chemical exposure and imply an adaptive mechanism to xenobiotic stress.


In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice.

  • Wenting Ling‎ et al.
  • Frontiers in endocrinology‎
  • 2016‎

Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner.


Impaired dendritic growth and positioning of cortical pyramidal neurons by activation of aryl hydrocarbon receptor signaling in the developing mouse.

  • Eiki Kimura‎ et al.
  • PloS one‎
  • 2017‎

The basic helix-loop-helix (bHLH) transcription factors exert multiple functions in mammalian cerebral cortex development. The aryl hydrocarbon receptor (AhR), a member of the bHLH-Per-Arnt-Sim subfamily, is a ligand-activated transcription factor reported to regulate nervous system development in both invertebrates and vertebrates, but the functions that AhR signaling pathway may have for mammalian cerebral cortex development remains elusive. Although the endogenous ligand involved in brain developmental process has not been identified, the environmental pollutant dioxin potently binds AhR and induces abnormalities in higher brain function of laboratory animals. Thus, we studied how activation of AhR signaling influences cortical development in mice. To this end, we produced mice expressing either constitutively active-AhR (CA-AhR), which has the capacity for ligand-independent activation of downstream genes, or AhR, which requires its ligands for activation. In brief, CA-AhR-expressing plasmid and AhR-expressing plasmid were each transfected into neural stems cells in the developing cerebrum by in utero electroporation on embryonic day 14.5. On postnatal day 14, mice transfected in utero with CA-AhR, but not those transfected with AhR, exhibited drastically reduced dendritic arborization of layer II/III pyramidal neurons and impaired neuronal positioning in the developing somatosensory cortex. The effects of CA-AhR were observed for dendrite development but not for the commissural fiber projection, suggesting a preferential influence on dendrites. The present results indicate that over-activation of AhR perturbs neuronal migration and morphological development in mammalian cortex, supporting previous observations of impaired dendritic structure, cortical dysgenesis, and behavioral abnormalities following perinatal dioxin exposure.


A mouse model of Timothy syndrome exhibits altered social competitive dominance and inhibitory neuron development.

  • Shin-Ichiro Horigane‎ et al.
  • FEBS open bio‎
  • 2020‎

Multiple genetic factors related to autism spectrum disorder (ASD) have been identified, but the biological mechanisms remain obscure. Timothy syndrome (TS), associated with syndromic ASD, is caused by a gain-of-function mutation, G406R, in the pore-forming subunit of L-type Ca2+ channels, Cav 1.2. In this study, a mouse model of TS, TS2-neo, was used to enhance behavioral phenotyping and to identify developmental anomalies in inhibitory neurons. Using the IntelliCage, which enables sequential behavioral tasks without human handling and mouse isolation stress, high social competitive dominance was observed in TS2-neo mice. Furthermore, histological analysis demonstrated inhibitory neuronal abnormalities in the neocortex, including an excess of smaller-sized inhibitory presynaptic terminals in the somatosensory cortex of young adolescent mice and higher numbers of migrating inhibitory neurons from the medial ganglionic eminence during embryonic development. In contrast, no obvious changes in excitatory synaptic terminals were found. These novel neural abnormalities in inhibitory neurons of TS2-neo mice may result in a disturbed excitatory/inhibitory (E/I) balance, a key feature underlying ASD.


Neurons expressing the aryl hydrocarbon receptor in the locus coeruleus and island of Calleja major are novel targets of dioxin in the mouse brain.

  • Eiki Kimura‎ et al.
  • Histochemistry and cell biology‎
  • 2021‎

The aryl hydrocarbon receptor (AhR) acts as a receptor that responds to ligands, including dioxin. The AhR-ligand complex translocates from the cytoplasm into the nucleus to induce gene expression. Because dioxin exposure impairs cognitive and neurobehavioral functions, AhR-expressing neurons need to be identified for elucidation of the dioxin neurotoxicity mechanism. Immunohistochemistry was performed to detect AhR-expressing neurons in the mouse brain and confirm the specificity of the anti-AhR antibody using Ahr-/- mice. Intracellular distribution of AhR and expression level of AhR-target genes, Cyp1a1, Cyp1b1, and Ahr repressor (Ahrr), were analyzed by immunohistochemistry and quantitative RT-PCR, respectively, using mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The mouse brains were shown to harbor AhR in neurons of the locus coeruleus (LC) and island of Calleja major (ICjM) during developmental period in Ahr+/+ mice but not in Ahr-/- mice. A significant increase in nuclear AhR of ICjM neurons but not LC neurons was found in 14-day-old mice compared to 5- and 7-day-old mice. AhR was significantly translocated into the nucleus in LC and ICjM neurons of TCDD-exposed adult mice. Additionally, the expression levels of Cyp1a1, Cyp1b1, and Ahrr genes in the brain, a surrogate of TCDD in the tissue, were significantly increased by dioxin exposure, suggesting that dioxin-activated AhR induces gene expression in LC and ICjM neurons. This histochemical study shows the ligand-induced nuclear translocation of AhR at the single-neuron level in vivo. Thus, the neurotoxicological significance of the dioxin-activated AhR in the LC and ICjM warrants further studies.


AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse.

  • Eiki Kimura‎ et al.
  • Scientific reports‎
  • 2016‎

Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals.


Automated test of behavioral flexibility in mice using a behavioral sequencing task in IntelliCage.

  • Toshihiro Endo‎ et al.
  • Behavioural brain research‎
  • 2011‎

There has been a long-standing need to develop efficient and standardized behavioral test methods for evaluating higher-order brain functions in mice. Here, we developed and validated a behavioral flexibility test in mice using IntelliCage, a fully automated behavioral analysis system for mice in a group-housed environment. We first developed a "behavioral sequencing task" in the IntelliCage that enables us to assess the learning ability of place discrimination and behavioral sequence for reward acquisition. In the serial reversal learning using the task, the discriminated spatial patterns of the rewarded and never-rewarded places were serially reversed, and thus, mice were accordingly expected to realign the previously acquired behavioral sequence. In general, the tested mice showed rapid acquisition of the behavioral sequencing task and behavioral flexibility in the subsequent serial reversal stages both in intra- and inter-session analyses. It was found that essentially the same results were obtained among three different laboratories, which confirm the high stability of the present test protocol in different strains of mice (C57BL/6, DBA/2, and ICR). In particular, the most trained cohort of C57BL/6 mice achieved a markedly rapid adaptation to the reversal task in the final phase of the long-term serial reversal test, which possibly indicated that the mice adapted to the "reversal rule" itself. In conclusion, the newly developed behavioral test was shown to be a valid assay of behavioral flexibility in mice, and is expected to be utilized in tests of mouse models of cognitive deficits.


Predominant role of cytosolic phospholipase A2α in dioxin-induced neonatal hydronephrosis in mice.

  • Wataru Yoshioka‎ et al.
  • Scientific reports‎
  • 2014‎

Hydronephrosis is a common disease characterized by dilation of the renal pelvis and calices, resulting in loss of kidney function in the most severe cases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces nonobstructive hydronephrosis in mouse neonates through upregulation of prostaglandin E2 (PGE2) synthesis pathway consisting of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) by a yet unknown mechanism. We here studied possible involvement of cytosolic phospholipase A2α (cPLA2α) in this mechanism. To this end, we used a cPLA2α-null mouse model and found that cPLA2α has a significant role in the upregulation of the PGE2 synthesis pathway through a noncanonical pathway of aryl hydrocarbon receptor. This study is the first to demonstrate the predominant role of cPLA2α in hydronephrosis. Elucidation of the pathway leading to the onset of hydronephrosis using the TCDD-exposed mouse model will deepen our understanding of the molecular basis of nonobstructive hydronephrosis in humans.


Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles.

  • Toshiki Aiba‎ et al.
  • BMC molecular biology‎
  • 2017‎

It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP.


Application of NeuroTrace staining in the fresh frozen brain samples to laser microdissection combined with quantitative RT-PCR analysis.

  • Seico Benner‎ et al.
  • BMC research notes‎
  • 2015‎

The heterogeneity of the brain requires appropriate molecular biological approaches to account for its morphological complexity. Laser-assisted microdissection followed by transcript profiling by quantitative determination has been reported to be an optimal methodology. Nevertheless, not all brain regions can be identified easily without staining, restricting the accuracy and efficiency in sampling. The aim of the present study was to validate whether fixation and staining treatments are suitable for quantitative transcript expression analysis in laser microdissection (LMD) samples. Quantitative RT-PCR was used to determine the absolute transcript expression levels and profiles of samples obtained from the hippocampal dentate gyrus from fresh frozen mice brain sections that had been fixed with ethanol and stained with NeuroTrace. The results were compared with those obtained from unfixed and unstained samples.


Prenatal Exposure to Arsenic Impairs Behavioral Flexibility and Cortical Structure in Mice.

  • Kyaw H Aung‎ et al.
  • Frontiers in neuroscience‎
  • 2016‎

Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although, it has been demonstrated that exposure to sodium arsenite (NaAsO2) suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL), which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm) was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment.


Executive function deficits and social-behavioral abnormality in mice exposed to a low dose of dioxin in utero and via lactation.

  • Toshihiro Endo‎ et al.
  • PloS one‎
  • 2012‎

An increasing prevalence of mental health problems has been partly ascribed to abnormal brain development that is induced upon exposure to environmental chemicals. However, it has been extremely difficult to detect and assess such causality particularly at low exposure levels. To address this question, we here investigated higher brain function in mice exposed to dioxin in utero and via lactation by using our recently developed automated behavioral flexibility test and immunohistochemistry of neuronal activation markers Arc, at the 14 brain areas. Pregnant C57BL/6 mice were given orally a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at a dose of either 0, 0.6 or 3.0 µg/kg on gestation day 12.5. When the pups reached adulthood, they were group-housed in IntelliCage to assess their behavior. As a result, the offspring born to dams exposed to 0.6 µg TCDD/kg were shown to have behavioral inflexibility, compulsive repetitive behavior, and dramatically lowered competitive dominance. In these mice, immunohistochemistry of Arc exhibited the signs of hypoactivation of the medial prefrontal cortex (mPFC) and hyperactivation of the amygdala. Intriguingly, mice exposed to 3.0 µg/kg were hardly affected in both the behavioral and neuronal activation indices, indicating that the robust, non-monotonic dose-response relationship. In conclusion, this study showed for the first time that perinatal exposure to a low dose of TCDD in mice develops executive function deficits and social behavioral abnormality accompanied with the signs of imbalanced mPFC-amygdala activation.


Identification of the functional domain of thyroid hormone receptor responsible for polychlorinated biphenyl-mediated suppression of its action in vitro.

  • Wataru Miyazaki‎ et al.
  • Environmental health perspectives‎
  • 2008‎

Polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins, and poly-chlorinated dibenzofurans adversely affect the health of humans and various animals. Such effects might be partially exerted through the thyroid hormone (TH) system. We previously reported that one of the hydroxylated PCB congeners suppresses TH receptor (TR)-mediated transcription by dissociating TR from the TH response element (TRE). However, the binding site of PCB within TR has not yet been identified.


Multiple animal positioning system shows that socially-reared mice influence the social proximity of isolation-reared cagemates.

  • Nozomi Endo‎ et al.
  • Communications biology‎
  • 2018‎

Social relationships are a key determinant of social behaviour, and disruption of social behaviour is a major symptom of several psychiatric disorders. However, few studies have analysed social relationships among multiple individuals in a group or how social relationships within a group influence the behaviour of members with impaired socialisation. Here, we developed a video-analysis-based system, the Multiple-Animal Positioning System (MAPS), to automatically and separately analyse the social behaviour of multiple individuals in group housing. Using MAPS, we show that social isolation of male mice during adolescence leads to impaired social proximity in adulthood. The phenotype of these socially isolated mice was partially rescued by cohabitation with group-housed (socially-reared) mice, indicating that both individual behavioural traits and those of cagemates influence social proximity. Furthermore, we demonstrate that low reactive behaviour of other cagemates also influence individual social proximity in male mice.


Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain.

  • Eiki Kimura‎ et al.
  • Frontiers in neuroanatomy‎
  • 2017‎

Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain.


Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters activity-dependent expression of BDNF mRNA in the neocortex and male rat sexual behavior in adulthood.

  • Masaki Kakeyama‎ et al.
  • Neurotoxicology‎
  • 2003‎

Dioxin and its related compounds are suspected to cause neurological and nueroendocrinological disruption in human and laboratory animal offspring upon in utero and lactational exposure during growth and development. We tested the hypothesis by utilizing Long-Evans Hooded rats that perinatal exposure to dioxins affects the neocortical function and expression of sexual behavior in adulthood. In the sexual behavior test, perinatal exposure to TCDD significantly reduced the number of mounts and intromissions. The mRNA semi-quantification in in situ hybridization showed that the mating stimulus in control males induced c-fos mRNA expression in the preoptic area (POA) and the brain derived neurotrophic factor (BDNF) mRNA upregulation in the frontal cortex. In contrast, perinatal exposure to TCDD lowered the upregulation of BDNF mRNA in the frontal cortex but not that of c-fos mRNA in the POA. The volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) was not affected. The results suggest that perinatal TCDD affects the neocortical function independently from the brain sexual differentiation and alters the expression of sexual behavior.


Differential susceptibilities of Holtzman and Sprague-Dawley rats to fetal death and placental dysfunction induced by 2,3,7,8-teterachlorodibenzo-p-dioxin (TCDD) despite the identical primary structure of the aryl hydrocarbon receptor.

  • Takashige Kawakami‎ et al.
  • Toxicology and applied pharmacology‎
  • 2006‎

A single oral dose of 2,3,7,8-tetrachlorodibenzo-p-dioin (TCDD) administered to pregnant Holtzman (HLZ) rats on gestational days 15 (GD15) caused placental dysfunction, resulting in fetal death (Ishimura, R., Ohsako, S., Miyabara, Y., Sakaue, M., Kawakami, T., Aoki, Y., Yonemoto, J., Tohyama, C., 2002a. Increased glycogen content and glucose transporter 3 mRNA level in the placenta of Holtzman rats after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 178, 161-171; Ishimura, R., Ohsako, S., Kawakami, T., Sakaue, M., Aoki, Y., Tohyama, C., 2002b. Altered protein profile and possible hypoxia in the placenta of 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed rats. Toxicol. Appl. Pharmacol. 185, 197-206). In order to investigate the mechanism underlying the TCDD-induced fetal death, we compared two outbred strains of rats, namely, the HLZ and the Sprague-Dawley International Genetic Standard rats (SD-IGS), a strain with characteristics resembling those of the HLZ rats. Pregnant HLZ and SD-IGS rats were administered TCDD as a single dose by gavage on GD15, as described within the parentheses (HLZ, 0, 1.6 mug TCDD/kg; SD-IGS, 0, 2, 5, 10 microg TCDD/kg). Whereas a high incidence (14%) of fetal death was observed on GD20 in the HLZ rats, no fetal deaths occurred in the SD-IGS rats, even at the highest dose of TCDD. A histological marker of cellular abnormality at the placental junctional zone, i.e., delay in the disappearance of the glycogen cells and cysts filled with an eosinophilic material (GC-EM), which normally disappear by GD20, was observed in the HLZ rats after exposure to the lowest dose of TCDD (1.6 microg TCDD/kg), but not in the SD-IGS rats even after exposure to the highest dose of TCDD. Furthermore, maternal blood sinusoids in the labyrinth zone were constricted following exposure to TCDD in the HLZ, but not SD-IGS rats. These observations indicate that HLZ rats are more susceptible to the adverse effects of TCDD on fetal growth and placental function, than SD-IGS rats. Direct sequencing analysis of the aryl hydrocarbon receptor (AhR) gene revealed no difference in the primary structure of the receptor between the HLZ and SD-IGS rats. In addition, no significant differences were observed between the two strains of rats in the levels of induction of placental cytochrome P450 1A1, 1B1, AhR, and AhRR mRNAs following administration of serially increasing doses of TCDD (0.0125, 0.05, 0.2, 0.8, and 1.6 microg TCDD/kg), indicating that the activity of TCDD-AhR complex in the placenta is similar between the HLZ and SD-IGS rats. Taken together, the above-described findings indicate that the higher susceptibility of HLZ rats to TCDD-induced placental dysfunction and fetal death may be modulated by other factor(s) in the genetic background of HLZ rats than the AhR.


Fluorescence laser microdissection reveals a distinct pattern of gene activation in the mouse hippocampal region.

  • Wataru Yoshioka‎ et al.
  • Scientific reports‎
  • 2012‎

A histoanatomical context is imperative in an analysis of gene expression in a cell in a tissue to elucidate physiological function of the cell. In this study, we made technical advances in fluorescence laser microdissection (LMD) in combination with the absolute quantification of small amounts of mRNAs from a region of interest (ROI) in fluorescence-labeled tissue sections. We demonstrate that our fluorescence LMD-RTqPCR method has three orders of dynamic range, with the lower limit of ROI-size corresponding to a single cell. The absolute quantification of the expression levels of the immediate early genes in an ROI equivalent to a few hundred neurons in the hippocampus revealed that mice transferred from their home cage to a novel environment have distinct activation profiles in the hippocampal regions (CA1, CA3, and DG) and that the gene expression pattern in CA1, but not in the other regions, follows a power law distribution.


Roles of cytosolic phospholipase A2α in reproductive and systemic toxicities in 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed mice.

  • Nozomi Fujisawa‎ et al.
  • Archives of toxicology‎
  • 2018‎

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a variety of toxicities upon binding of TCDD to aryl hydrocarbon receptor. Although this binding upregulates the synthesis of prostaglandins and their related lipid mediators via cytosolic phospholipase A2α (cPLA2α), toxicological significance of this signaling pathway remains elusive. Herein, we investigated the roles of cPLA2α in TCDD toxicities using cPLA2α-null mice. In a first set of experiments, pregnant mice were orally administered TCDD at a dose of 40 μg/kg on gestation day (GD) 12.5, and fetuses were collected on GD 18 for subsequent analyses. The number of live male fetuses of cPLA2α-null type was significantly less than that of wild-type in TCDD-exposed litters. TCDD-induced hydronephrosis was more severe in wild-type fetuses than in cPLA2α-null fetuses regardless of sex, and kidney expression levels of the inflammatory cytokines interleukin-1β and tumor necrosis factor-α were increased in a cPLA2α-dependent manner in TCDD-exposed fetuses. In a second set of experiments, following intraperitoneal administration of TCDD at 50 μg/kg, body weight of the male adult mice was decreased within 2 days in wild-type mice but was not changed in cPLA2α-null mice. In addition, TCDD-induced lipid accumulation in the livers of cPLA2α-null mice was at an intermediate level compared with TCDD-exposed wild-type and vehicle-control mice. In conclusion, the present results show that cPLA2α is involved in TCDD-induced body weight loss, lipid accumulation in the liver, fetal hydronephrosis, and cytokine gene expression, and that the molecular basis of TCDD toxicity differs considerably between target tissues and life stages.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: