Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 28 papers

Flotillins in the intercalated disc are potential modulators of cardiac excitability.

  • Elise L Kessler‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2019‎

The intercalated disc (ID) is important for cardiac remodeling and has become a subject of intensive research efforts. However, as yet the composition of the ID has still not been conclusively resolved and the role of many proteins identified in the ID, like Flotillin-2, is often unknown. The Flotillin proteins are known to be involved in the stabilization of cadherins and desmosomes in the epidermis and upon cancer development. However, their role in the heart has so far not been investigated. Therefore, in this study, we aimed at identifying the role of Flotillin-1 and Flotillin-2 in the cardiac ID.


A systematic comparison of cardiovascular magnetic resonance and high resolution histological fibrosis quantification in a chronic porcine infarct model.

  • Johannes M I H Gho‎ et al.
  • The international journal of cardiovascular imaging‎
  • 2017‎

The noninvasive reference standard for myocardial fibrosis detection on cardiovascular magnetic resonance imaging (CMR) is late gadolinium enhancement (LGE). Currently there is no consensus on the preferred method for LGE quantification. Moreover myocardial wall thickening (WT) and strain are measures of regional deformation and function. The aim of this research was to systematically compare in vivo CMR parameters, such as LGE, WT and strain, with histological fibrosis quantification. Eight weeks after 90 min ischemia/reperfusion of the LAD artery, 16 pigs underwent in vivo Cine and LGE CMR. Histological sections from transverse heart slices were digitally analysed for fibrosis quantification. Mean fibrosis percentage of analysed sections was related to the different CMR techniques (using segmentation or feature tracking software) for each slice using a linear mixed model analysis. The full width at half maximum (FWHM) technique for quantification of LGE yielded the highest R2 of 60%. Cine derived myocardial WT explained 16-36% of the histological myocardial fibrosis. The peak circumferential and radial strain measured by feature tracking could explain 15 and 10% of the variance of myocardial fibrosis, respectively. The used method to systematically compare CMR image data with digital histological images is novel and feasible. Myocardial WT and strain were only modestly related with the amount of fibrosis. The fully automatic FWHM analysis technique is the preferred method to detect myocardial fibrosis.


Potential of mesenchymal- and cardiac progenitor cells for therapeutic targeting of B-cells and antibody responses in end-stage heart failure.

  • Patricia van den Hoogen‎ et al.
  • PloS one‎
  • 2019‎

Upon myocardial damage, the release of cardiac proteins induces a strong antibody-mediated immune response, which can lead to adverse cardiac remodeling and eventually heart failure (HF). Stem cell therapy using mesenchymal stromal cells (MSCs) or cardiomyocyte progenitor cells (CPCs) previously showed beneficial effects on cardiac function despite low engraftment in the heart. Paracrine mediators are likely of great importance, where, for example, MSC-derived extracellular vesicles (EVs) also show immunosuppressive properties in vitro. However, the limited capacity of MSCs to differentiate into cardiac cells and the sufficient scaling of MSC-derived EVs remain a challenge to clinical translation. Therefore, we investigated the immunosuppressive actions of endogenous CPCs and CPC-derived EVs on antibody production in vitro, using both healthy controls and end-stage HF patients. Both MSCs and CPCs strongly inhibit lymphocyte proliferation and antibody production in vitro. Furthermore, CPC-derived EVs significantly lowered the levels of IgG1, IgG4, and IgM, especially when administered for longer duration. In line with previous findings, plasma cells of end-stage HF patients showed high production of IgG3, which can be inhibited by MSCs in vitro. MSCs and CPCs inhibit in vitro antibody production of both healthy and end-stage HF-derived immune cells. CPC-derived paracrine factors, such as EVs, show similar effects, but do not provide the complete immunosuppressive capacity of CPCs. The strongest immunosuppressive effects were observed using MSCs, suggesting that MSCs might be the best candidates for therapeutic targeting of B-cell responses in HF.


H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts.

  • Jiayi Pei‎ et al.
  • Clinical epigenetics‎
  • 2020‎

H3K27ac histone acetylome changes contribute to the phenotypic response in heart diseases, particularly in end-stage heart failure. However, such epigenetic alterations have not been systematically investigated in remodeled non-failing human hearts. Therefore, valuable insight into cardiac dysfunction in early remodeling is lacking. This study aimed to reveal the acetylation changes of chromatin regions in response to myocardial remodeling and their correlations to transcriptional changes of neighboring genes.


Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation.

  • Friederike Cuello‎ et al.
  • EMBO molecular medicine‎
  • 2021‎

The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.


Deletions of 11q22.3-q25 are associated with atypical lung carcinoids and poor clinical outcome.

  • Dorian R A Swarts‎ et al.
  • The American journal of pathology‎
  • 2011‎

Carcinoids are slow-growing neuroendocrine tumors that, in the lung, can be subclassified as typical (TC) or atypical (AC). To identify genetic alterations that improve the prediction of prognosis, we investigated 34 carcinoid tumors of the lung (18 TCs, 15 ACs, and 1 unclassified) by using array comparative genomic hybridization (array CGH) on 3700 genomic bacterial artificial chromosome arrays (resolution ≤1 Mb). When comparing ACs with TCs, the data revealed: i) a significant difference in the average number of chromosome arms altered (9.6 versus 4.2, respectively; P = 0.036), with one subgroup of five ACs having more than 15 chromosome arms altered; ii) chromosomal changes in 30% of ACs or more with additions at 9q (≥1 Mb) and losses at 1p, 2q, 10q, and 11q; and iii) 11q deletions in 8 of 15 ACs versus 1 of 18 TCs (P = 0.004), which was confirmed via fluorescence in situ hybridization. The four critical regions of interest in 45% ACs or more comprised 11q14.1, 11q22.1-q22.3, 11q22.3-q23.2, and 11q24.2-q25, all telomeric of MEN1 at 11q13. Results were correlated with patient clinical data and long-term follow-up. Thus, there is a strong association of 11q22.3-q25 loss with poorer prognosis, alone or in combination with absence of 9q34.11 alterations (P = 0.0022 and P = 0.00026, respectively).


High resolution systematic digital histological quantification of cardiac fibrosis and adipose tissue in phospholamban p.Arg14del mutation associated cardiomyopathy.

  • Johannes M I H Gho‎ et al.
  • PloS one‎
  • 2014‎

Myocardial fibrosis can lead to heart failure and act as a substrate for cardiac arrhythmias. In dilated cardiomyopathy diffuse interstitial reactive fibrosis can be observed, whereas arrhythmogenic cardiomyopathy is characterized by fibrofatty replacement in predominantly the right ventricle. The p.Arg14del mutation in the phospholamban (PLN) gene has been associated with dilated cardiomyopathy and recently also with arrhythmogenic cardiomyopathy. Aim of the present study is to determine the exact pattern of fibrosis and fatty replacement in PLN p.Arg14del mutation positive patients, with a novel method for high resolution systematic digital histological quantification of fibrosis and fatty tissue in cardiac tissue. Transversal mid-ventricular slices (n = 8) from whole hearts were collected from patients with the PLN p.Arg14del mutation (age 48±16 years; 4 (50%) male). An in-house developed open source MATLAB script was used for digital analysis of Masson's trichrome stained slides (http://sourceforge.net/projects/fibroquant/). Slides were divided into trabecular, inner and outer compact myocardium. Per region the percentage of connective tissue, cardiomyocytes and fatty tissue was quantified. In PLN p.Arg14del mutation associated cardiomyopathy, myocardial fibrosis is predominantly present in the left posterolateral wall and to a lesser extent in the right ventricular wall, whereas fatty changes are more pronounced in the right ventricular wall. No difference in distribution pattern of fibrosis and adipocytes was observed between patients with a clinical predominantly dilated and arrhythmogenic cardiomyopathy phenotype. In the future, this novel method for quantifying fibrosis and fatty tissue can be used to assess cardiac fibrosis and fatty tissue in animal models and a broad range of human cardiomyopathies.


Distinct phenotypes of cardiac allograft vasculopathy after heart transplantation: a histopathological study.

  • Manon M H Huibers‎ et al.
  • Atherosclerosis‎
  • 2014‎

Long-term survival after heart transplantation (HTx) is hampered by cardiac allograft vasculopathy (CAV). Better understanding of the pathophysiological mechanisms of CAV might have considerable consequences for therapeutic approaches in the future. The aim of the present study was to investigate the histological phenotypes of CAV in relation with clinical patient characteristics.


Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy.

  • Ioannis Karakikes‎ et al.
  • Nature communications‎
  • 2015‎

A number of genetic mutations is associated with cardiomyopathies. A mutation in the coding region of the phospholamban (PLN) gene (R14del) is identified in families with hereditary heart failure. Heterozygous patients exhibit left ventricular dilation and ventricular arrhythmias. Here we generate induced pluripotent stem cells (iPSCs) from a patient harbouring the PLN R14del mutation and differentiate them into cardiomyocytes (iPSC-CMs). We find that the PLN R14del mutation induces Ca(2+) handling abnormalities, electrical instability, abnormal cytoplasmic distribution of PLN protein and increases expression of molecular markers of cardiac hypertrophy in iPSC-CMs. Gene correction using transcription activator-like effector nucleases (TALENs) ameliorates the R14del-associated disease phenotypes in iPSC-CMs. In addition, we show that knocking down the endogenous PLN and simultaneously expressing a codon-optimized PLN gene reverses the disease phenotype in vitro. Our findings offer novel strategies for targeting the pathogenic mutations associated with cardiomyopathies.


Radiofrequency Ablation of the Atherosclerotic Plaque: a Proof of Concept Study in an Atherosclerotic Model.

  • Guilielmus H J M Ellenbroek‎ et al.
  • Journal of cardiovascular translational research‎
  • 2017‎

Increased plaque vascularization is causatively associated with the progression of unstable atherosclerotic vessel disease. We investigated the safety and efficacy of heat-generating radiofrequency ablation (RFA) in reducing the number of vessels in the plaque and adventitia and its effect on plaque size and composition. To this end, New Zealand White rabbits were fed a cholesterol-enriched diet and subjected to balloon denudation of the infrarenal aorta to induce atherosclerotic plaque formation. After 13 weeks, the proximal or distal half of the infrarenal aorta was exposed to transluminal RFA. The untreated half served as an intra-individual control. Optical coherence tomography (OCT) was performed directly after RFA. We found that RFA on the rabbit atherosclerotic plaque is safe and leads to decreased intraplaque vessel density and smooth muscle cell content but does not affect other components of plaque composition or size.


A circular RNA derived from the insulin receptor locus protects against doxorubicin-induced cardiotoxicity.

  • Dongchao Lu‎ et al.
  • European heart journal‎
  • 2022‎

Cardiotoxicity leading to heart failure (HF) is a growing problem in many cancer survivors. As specific treatment strategies are not available, RNA discovery pipelines were employed and a new and powerful circular RNA (circRNA)-based therapy was developed for the treatment of doxorubicin-induced HF.


Gene expression profiling of hypertrophic cardiomyocytes identifies new players in pathological remodelling.

  • Marta Vigil-Garcia‎ et al.
  • Cardiovascular research‎
  • 2021‎

Pathological cardiac remodelling is characterized by cardiomyocyte (CM) hypertrophy and fibroblast activation, which can ultimately lead to maladaptive hypertrophy and heart failure (HF). Genome-wide expression analysis on heart tissue has been instrumental for the identification of molecular mechanisms at play. However, these data were based on signals derived from all cardiac cell types. Here, we aimed for a more detailed view on molecular changes driving maladaptive CM hypertrophy to aid in the development of therapies to reverse pathological remodelling.


The microtubule signature in cardiac disease: etiology, disease stage, and age dependency.

  • Sıla Algül‎ et al.
  • Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology‎
  • 2023‎

Employing animal models to study heart failure (HF) has become indispensable to discover and test novel therapies, but their translatability remains challenging. Although cytoskeletal alterations are linked to HF, the tubulin signature of common experimental models has been incompletely defined. Here, we assessed the tubulin signature in a large set of human cardiac samples and myocardium of animal models with cardiac remodeling caused by pressure overload, myocardial infarction or a gene defect. We studied levels of total, acetylated, and detyrosinated α-tubulin and desmin in cardiac tissue from hypertrophic (HCM) and dilated cardiomyopathy (DCM) patients with an idiopathic (n = 7), ischemic (n = 7) or genetic origin (n = 59), and in a pressure-overload concentric hypertrophic pig model (n = 32), pigs with a myocardial infarction (n = 28), mature pigs (n = 6), and mice (n = 15) carrying the HCM-associated MYBPC32373insG mutation. In the human samples, detyrosinated α-tubulin was increased 4-fold in end-stage HCM and 14-fold in pediatric DCM patients. Acetylated α-tubulin was increased twofold in ischemic patients. Across different animal models, the tubulin signature remained mostly unaltered. Only mature pigs were characterized by a 0.5-fold decrease in levels of total, acetylated, and detyrosinated α-tubulin. Moreover, we showed increased desmin levels in biopsies from NYHA class II HCM patients (2.5-fold) and the pressure-overload pig model (0.2-0.3-fold). Together, our data suggest that desmin levels increase early on in concentric hypertrophy and that animal models only partially recapitulate the proliferated and modified tubulin signature observed clinically. Our data warrant careful consideration when studying maladaptive responses to changes in the tubulin content in animal models.


The accumulation of erythrocytes quantified and visualized by Glycophorin C in carotid atherosclerotic plaque reflects intraplaque hemorrhage and pre-procedural neurological symptoms.

  • Joost M Mekke‎ et al.
  • Scientific reports‎
  • 2023‎

The accumulation of erythrocyte membranes within an atherosclerotic plaque may contribute to the deposition of free cholesterol and thereby the enlargement of the necrotic core. Erythrocyte membranes can be visualized and quantified in the plaque by immunostaining for the erythrocyte marker glycophorin C. Hence, we theorized that the accumulation of erythrocytes quantified by glycophorin C could function as a marker for plaque vulnerability, possibly reflecting intraplaque hemorrhage (IPH), and offering predictive value for pre-procedural neurological symptoms. We employed the CellProfiler-integrated slideToolKit workflow to visualize and quantify glycophorin C, defined as the total plaque area that is positive for glycophorin C, in single slides of culprit lesions obtained from the Athero-Express Biobank of 1819 consecutive asymptomatic and symptomatic patients who underwent carotid endarterectomy. Our assessment included the evaluation of various parameters such as lipid core, calcifications, collagen content, SMC content, and macrophage burden. These parameters were evaluated using a semi-quantitative scoring method, and the resulting data was dichotomized as predefined criteria into categories of no/minor or moderate/heavy staining. In addition, the presence or absence of IPH was also scored. The prevalence of IPH and pre-procedural neurological symptoms were 62.4% and 87.1%, respectively. The amount of glycophorin staining was significantly higher in samples from men compared to samples of women (median 7.15 (IQR:3.37, 13.41) versus median 4.06 (IQR:1.98, 8.32), p < 0.001). Glycophorin C was associated with IPH adjusted for clinical confounders (OR 1.90; 95% CI 1.63, 2.21; p =  < 0.001). Glycophorin C was significantly associated with ipsilateral pre-procedural neurological symptoms (OR:1.27, 95%CI:1.06-1.41, p = 0.005). Sex-stratified analysis, showed that this was also the case for men (OR 1.37; 95%CI 1.12, 1.69; p = 0.003), but not for women (OR 1.15; 95%CI 0.77, 1.73; p = 0.27). Glycophorin C was associated with classical features of a vulnerable plaque, such as a larger lipid core, a higher macrophage burden, less calcifications, a lower collagen and SMC content. There were marked sex differences, in men, glycophorin C was associated with calcifications and collagen while these associations were not found in women. To conclude, the accumulation of erythrocytes in atherosclerotic plaque quantified and visualized by glycophorin C was independently associated with the presence of IPH, preprocedural symptoms in men, and with a more vulnerable plaque composition in both men and women. These results strengthen the notion that the accumulation of erythrocytes quantified by glycophorin C can be used as a marker for plaque vulnerability.


Identification and functional characterization of cardiac pacemaker cells in zebrafish.

  • Federico Tessadori‎ et al.
  • PloS one‎
  • 2012‎

In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3) and Islet-1 (Isl1). Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.


Histopathological characterization of intimal lesions and arterial wall calcification in the arteries of the leg of elderly cadavers.

  • Annelotte Vos‎ et al.
  • Clinical anatomy (New York, N.Y.)‎
  • 2021‎

Although arteries of the leg have been studied in extensively diseased amputation specimens, little is known about the composition of vascular lesions present in the general population. The aim of this study was to describe the natural development of adaptive intimal thickening, atherosclerotic lesion development and vascular calcification in the leg of a general elderly population.


The Translational Landscape of the Human Heart.

  • Sebastiaan van Heesch‎ et al.
  • Cell‎
  • 2019‎

Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.


Single-cell transcriptomics provides insights into hypertrophic cardiomyopathy.

  • Martijn Wehrens‎ et al.
  • Cell reports‎
  • 2022‎

Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is characterized by unexplained segmental hypertrophy that is usually most pronounced in the septum. While sarcomeric gene mutations are often the genetic basis for HCM, the mechanistic origin for the heterogeneous remodeling remains largely unknown. A better understanding of the gene networks driving the cardiomyocyte (CM) hypertrophy is required to improve therapeutic strategies. Patients suffering from HCM often receive a septal myectomy surgery to relieve outflow tract obstruction due to hypertrophy. Using single-cell RNA sequencing (scRNA-seq) on septal myectomy samples from patients with HCM, we identify functional links between genes, transcription factors, and cell size relevant for HCM. The data show the utility of using scRNA-seq on the human hypertrophic heart, highlight CM heterogeneity, and provide a wealth of insights into molecular events involved in HCM that can eventually contribute to the development of enhanced therapies.


Spatial multi-omic map of human myocardial infarction.

  • Christoph Kuppe‎ et al.
  • Nature‎
  • 2022‎

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


P62-positive aggregates are homogenously distributed in the myocardium and associated with the type of mutation in genetic cardiomyopathy.

  • Zoë Joy van der Klooster‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Genetic cardiomyopathy is caused by mutations in various genes. The accumulation of potentially proteotoxic mutant protein aggregates due to insufficient autophagy is a possible mechanism of disease development. The objective of this study was to investigate the distribution in the myocardium of such aggregates in relation to specific pathogenic genetic mutations in cardiomyopathy hearts. Hearts from 32 genetic cardiomyopathy patients, 4 non-genetic cardiomyopathy patients and 5 controls were studied. Microscopic slices from an entire midventricular heart slice were stained for p62 (sequestosome-1, marker for aggregated proteins destined for autophagy). The percentage of cardiomyocytes with p62 accumulation was higher in cardiomyopathy hearts (median 3.3%) than in healthy controls (0.3%; P < .0001). p62 accumulation was highest in the desmin (15.6%) and phospholamban (7.2%) groups. P62 accumulation was homogeneously distributed in the myocardium. Fibrosis was not associated with p62 accumulation in subgroup analysis of phospholamban hearts. In conclusion, accumulation of p62-positive protein aggregates is homogeneously distributed in the myocardium independently of fibrosis distribution and associated with desmin and phospholamban cardiomyopathy. Proteotoxic protein accumulation is a diffuse process in the myocardium while a more localized second hit, such as local strain during exercise, might determine whether this leads to regional myocyte decay.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: