Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Orbitofrontal cortex mediates the differential impact of signaled-reward probability on discrimination accuracy.

  • Ryan D Ward‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

Orbitofrontal cortex (OFC) function is critical to decision making and behavior based on the value of expected outcomes. While some of the roles the OFC plays in value computations and behavior have been identified, the role of the OFC in modulating cognitive resources based on reward expectancy has not been explored. Here we assessed the involvement of OFC in the interaction between motivation and attention. We tested mice in a sustained-attention task in which explicitly signaling the probability of reward differentially modulates discrimination accuracy. Using pharmacogenetic methods, we generated mice in which neuronal activity in the OFC could be transiently and reversibly inhibited during performance of our signaled-probability task. We found that inhibiting OFC neuronal activity abolished the ability of reward-associated cues to differentially impact accuracy of sustained-attention performance. This failure to modulate attention occurred despite evidence that mice still processed the differential value of the reward-associated cues. These data indicate that OFC function is critical for the ability of a reward-related signal to impact other cognitive and decision-making processes and begin to delineate the neural circuitry involved in the interaction between motivation and attention.


Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine.

  • Maria Scherma‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

The initial response to an addictive substance can facilitate repeated use: That is, individuals experiencing more positive effects are more likely to use that drug again. Increasing evidence suggests that psychoactive cannabinoid use in adolescence enhances the behavioral effects of cocaine. However, despite the behavioral data, there is no neurobiological evidence demonstrating that cannabinoids can also alter the brain's initial molecular and epigenetic response to cocaine. Here, we utilized a multiomics approach (epigenomics, transcriptomics, proteomics, and phosphoproteomics) to characterize how the rat brain responds to its first encounter with cocaine, with or without preexposure to the synthetic cannabinoid WIN 55,212-2 (WIN). We find that in adolescent (but not in adult) rats, preexposure to WIN results in cross-sensitization to cocaine, which correlates with histone hyperacetylation and decreased levels of HDAC6 in the prefrontal cortex (PFC). In the PFC, we also find that WIN preexposure blunts the typical mRNA response to cocaine and instead results in alternative splicing and chromatin accessibility events, involving genes such as Npas2 Moreover, preexposure to WIN enhances the effects of cocaine on protein phosphorylation, including ERK/MAPK-targets like gephyrin, and modulates the synaptic AMPAR/GluR composition both in the PFC and the nucleus accumbens (NAcc). PFC-NAcc gene network topological analyses, following cocaine exposure, reveal distinct top nodes in the WIN preexposed group, which include PACAP/ADCYAP1. These preclinical data demonstrate that adolescent cannabinoid exposure reprograms the initial behavioral, molecular, and epigenetic response to cocaine.


Corticotropin releasing factor type-1 receptor antagonism in the dorsolateral bed nucleus of the stria terminalis disrupts contextually conditioned fear, but not unconditioned fear to a predator odor.

  • Arun Asok‎ et al.
  • Psychoneuroendocrinology‎
  • 2016‎

The bed nucleus of the stria terminalis (BNST) plays a critical role in fear and anxiety. The BNST is important for contextual fear learning, but the mechanisms regulating this function remain unclear. One candidate mechanism is corticotropin-releasing-factor (CRF) acting at CRF type 1 receptors (CRFr1s). Yet, there has been little progress in elucidating if CRFr1s in the BNST are involved in different types of fear (conditioned and/or unconditioned). Therefore, the present study investigated the effect of antalarmin, a potent CRFr1 receptor antagonist, injected intracerebroventricularly (ICV) and into the dorsolateral BNST (LBNST) during single trial contextual fear conditioning or exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Neither ICV nor LBNST antalarmin disrupted unconditioned freezing to TMT. In contrast, ICV and LBNST antalarmin disrupted the retention of contextual fear when tested 24h later. Neither ICV nor LBNST antalarmin affected baseline or post-shock freezing-indicating antalarmin does not interfere with the early phases of contextual fear acquisition. Antalarmin did not (1) permanently affect the ability to learn and express contextual fear, (2) change responsivity to footshocks, or (3) affect the ability to freeze. Our findings highlight an important role for CRFr1s within the LBNST during contextually conditioned fear, but not unconditioned predator odor fear.


An Interaction between Serotonin Receptor Signaling and Dopamine Enhances Goal-Directed Vigor and Persistence in Mice.

  • Matthew R Bailey‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

The functionally selective 5-HT2C receptor ligand SB242084 can increase motivation and have rapid onset anti-depressant-like effects. We sought to identify the specific behavioral effects of SB242084 treatment and elucidate the mechanism in female and male mice. Using a quantitative behavioral approach, we determined that SB242084 increases the vigor and persistence of goal-directed activity across different types of physical work, particularly when work requirements are demanding. We found this influence of SB242084 on effort, rather than reward to be reflected in striatal DA measured during behavior. Using in vivo fast scan cyclic voltammetry, we found that SB242084 has no effect on reward-related phasic DA release in the NAc. Using in vivo microdialysis to measure tonic changes in extracellular DA, we also found no changes in the NAc. In contrast, SB242084 treatment increases extracellular DA in the dorsomedial striatum, an area that plays a key role in response vigor. These findings have several implications. At the behavioral level, this work shows that the capacity to work in demanding situations can be increased, without a generalized increase in motor activity or reward value. At the circuit level, we identified a pathway restricted potentiation of DA release and showed that this was the reason for the increased response vigor. At the cellular level, we show that a specific serotonin receptor cross talks to the DA system. Together, this information provides promise for the development of treatments for apathy, a serious clinical condition that can afflict patients with psychiatric and neurological disorders.SIGNIFICANCE STATEMENT Motivated behaviors are modulated by reward value, effort demands, and cost-benefit computations. This information drives the decision to act, which action to select, and the intensity with which the selected action is performed. Because these behavioral processes are all regulated by DA signaling, it is very difficult to influence selected aspects of motivated behavior without affecting others. Here we identify a pharmacological treatment that increases the vigor and persistence of responding in mice, without increasing generalized activity or changing reactions to rewards. We show that the 5-HT2C-selective ligand boosts motivation by potentiating activity-dependent DA release in the dorsomedial striatum. These results reveal a novel strategy for treating patients with motivational deficits, avolition, or apathy.


Dopamine encodes real-time reward availability and transitions between reward availability states on different timescales.

  • Abigail Kalmbach‎ et al.
  • Nature communications‎
  • 2022‎

Optimal behavior requires interpreting environmental cues that indicate when to perform actions. Dopamine is important for learning about reward-predicting events, but its role in adapting to inhibitory cues is unclear. Here we show that when mice can earn rewards in the absence but not presence of an auditory cue, dopamine level in the ventral striatum accurately reflects reward availability in real-time over a sustained period (80 s). In addition, unpredictable transitions between different states of reward availability are accompanied by rapid (~1-2 s) dopamine transients that deflect negatively at the onset and positively at the offset of the cue. This Dopamine encoding of reward availability and transitions between reward availability states is not dependent on reward or activity evoked dopamine release, appears before mice learn the task and is sensitive to motivational state. Our findings are consistent across different techniques including electrochemical recordings and fiber photometry with genetically encoded optical sensors for calcium and dopamine.


Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice.

  • Julianna Cavallaro‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2023‎

Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.


Corticotropin-releasing hormone signaling from prefrontal cortex to lateral septum suppresses interaction with familiar mice.

  • Noelia Sofia de León Reyes‎ et al.
  • Cell‎
  • 2023‎

Social preference, the decision to interact with one member of the same species over another, is critical to optimize social interactions. Thus, adult rodents favor interacting with novel conspecifics over familiar ones, but whether this social preference stems from neural circuits facilitating interactions with novel individuals or suppressing interactions with familiar ones remains unknown. Here, we identify neurons in the infra-limbic area (ILA) of the mouse prefrontal cortex that express the neuropeptide corticotropin-releasing hormone (CRH) and project to the dorsal region of the rostral lateral septum (rLS). We show how release of CRH during familiar encounters disinhibits rLS neurons, thereby suppressing social interactions with familiar mice and contributing to social novelty preference. We further demonstrate how the maturation of CRH expression in ILA during the first 2 post-natal weeks enables the developmental shift from a preference for littermates in juveniles to a preference for novel mice in adults.


Enkephalin release from VIP interneurons in the hippocampal CA2/3a region mediates heterosynaptic plasticity and social memory.

  • Felix Leroy‎ et al.
  • Molecular psychiatry‎
  • 2022‎

The hippocampus contains a diverse array of inhibitory interneurons that gate information flow through local cortico-hippocampal circuits to regulate memory storage. Although most studies of interneurons have focused on their role in fast synaptic inhibition mediated by GABA release, different classes of interneurons express unique sets of neuropeptides, many of which have been shown to exert powerful effects on neuronal function and memory when applied pharmacologically. However, relatively little is known about whether and how release of endogenous neuropeptides from inhibitory cells contributes to their behavioral role in regulating memory formation. Here we report that vasoactive intestinal peptide (VIP)-expressing interneurons participate in social memory storage by enhancing information transfer from hippocampal CA3 pyramidal neurons to CA2 pyramidal neurons. Notably, this action depends on release of the neuropeptide enkephalin from VIP neurons, causing long-term depression of feedforward inhibition onto CA2 pyramidal cells. Moreover, VIP neuron activity in the CA2 region is increased selectively during exploration of a novel conspecific. Our findings, thus, enhance our appreciation of how GABAergic neurons can regulate synaptic plasticity and mnemonic behavior by demonstrating that such actions can be mediated by release of a specific neuropeptide, rather than through classic fast inhibitory transmission.


Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice.

  • Julianna Cavallaro‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.


CPEB3 low-complexity motif regulates local protein synthesis via protein-protein interactions in neuronal ribonucleoprotein granules.

  • Lenzie Ford‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Biomolecular condensates, membraneless organelles found throughout the cell, play critical roles in many aspects of cellular function. Ribonucleoprotein granules (RNPs) are a type of biomolecular condensate necessary for local protein synthesis and are involved in synaptic plasticity and long-term memory. Most of the proteins in RNPs possess low-complexity motifs (LCM), allowing for increased promiscuity of protein-protein interactions. Here, we describe the importance of protein-protein interactions mediated by the LCM of RNA-binding protein cytoplasmic polyadenylation element binding protein 3 (CPEB3). CPEB3 is necessary for long-term synaptic plasticity and memory persistence, but the mechanisms involved are still not completely elucidated. We now present key mechanisms involved in its regulation of synaptic plasticity. We find that CPEB3-LCM plays a role in appropriate local protein synthesis of messenger ribonucleic acid (mRNA) targets, through crucial protein-protein interactions that drive localization to neuronal Decapping protein 1 (DCP1)-bodies. Translation-promoting CPEB3 and translation-inhibiting CPEB1 are packaged into neuronal RNP granules immediately after chemical long-term potentiation is induced, but only translation-promoting CPEB3 is repackaged to these organelles at later time points. This localization to neuronal RNP granules is critical for functional influence on translation as well as overall local protein synthesis (measured as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) insertion into the membrane and localization to the synapse). We therefore conclude that protein-protein interaction between the LCM of CPEB3 plays a critical role in local protein synthesis by utilizing neuronal RNP granules.


Subjective and Real Time: Coding Under Different Drug States.

  • Hugo Sanchez-Castillo‎ et al.
  • International journal of comparative psychology‎
  • 2015‎

Organisms are constantly extracting information from the temporal structure of the environment, which allows them to select appropriate actions and predict impending changes. Several lines of research have suggested that interval timing is modulated by the dopaminergic system. It has been proposed that higher levels of dopamine cause an internal clock to speed up, whereas less dopamine causes a deceleration of the clock. In most experiments the subjects are first trained to perform a timing task while drug free. Consequently, most of what is known about the influence of dopaminergic modulation of timing is on well-established timing performance. In the current study the impact of altered DA on the acquisition of temporal control was the focal question. Thirty male Sprague-Dawley rats were distributed randomly into three different groups (haloperidol, d-amphetamine or vehicle). Each animal received an injection 15 min prior to the start of every session from the beginning of interval training. The subjects were trained in a Fixed Interval (FI) 16s schedule followed by training on a peak procedure in which 64s non-reinforced peak trials were intermixed with FI trials. In a final test session all subjects were given vehicle injections and 10 consecutive non-reinforced peak trials to see if training under drug conditions altered the encoding of time. The current study suggests that administration of drugs that modulate dopamine do not alter the encoding temporal durations but do acutely affect the initiation of responding.


A circuit from hippocampal CA2 to lateral septum disinhibits social aggression.

  • Felix Leroy‎ et al.
  • Nature‎
  • 2018‎

Although the hippocampus is known to be important for declarative memory, it is less clear how hippocampal output regulates motivated behaviours, such as social aggression. Here we report that pyramidal neurons in the CA2 region of the hippocampus, which are important for social memory, promote social aggression in mice. This action depends on output from CA2 to the lateral septum, which is selectively enhanced immediately before an attack. Activation of the lateral septum by CA2 recruits a circuit that disinhibits a subnucleus of the ventromedial hypothalamus that is known to trigger attack. The social hormone arginine vasopressin enhances social aggression by acting on arginine vasopressin 1b receptors on CA2 presynaptic terminals in the lateral septum to facilitate excitatory synaptic transmission. In this manner, release of arginine vasopressin in the lateral septum, driven by an animal's internal state, may serve as a modulatory control that determines whether CA2 activity leads to declarative memory of a social encounter and/or promotes motivated social aggression.


Sex Differences in Remote Contextual Fear Generalization in Mice.

  • Arun Asok‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2019‎

The generalization of fear is adaptive in that it allows an animal to respond appropriately to novel threats that are not identical to previous experiences. In contrast, the overgeneralization of fear is maladaptive and is a hallmark of post-traumatic stress disorder (PTSD), a psychiatric illness that is characterized by chronic symptomatology and a higher incidence in women compared to men. Therefore, understanding the neural basis of fear generalization at remote time-points in female animals is of particular translational relevance. However, our understanding of the neurobiology of fear generalization is largely restricted to studies employing male mice and focusing on recent time-points (i.e., within 24-48 h following conditioning). To address these limitations, we examined how male and female mice generalize contextual fear at remote time intervals (i.e., 3 weeks after conditioning). In agreement with earlier studies of fear generalization at proximal time-points, we find that the test order of training and generalization contexts is a critical determinant of generalization and context discrimination, particularly for female mice. However, tactile elements that are present during fear conditioning are more salient for male mice. Our study highlights long-term sex differences in defensive behavior between male and female mice and may provide insight into sex differences in the processing and retrieval of remote fear memory observed in humans.


Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor Sensitization.

  • Abigail M Clark‎ et al.
  • eNeuro‎
  • 2017‎

Alterations in thalamic dopamine (DA) or DA D2 receptors (D2Rs) have been measured in drug addiction and schizophrenia, but the relevance of thalamic D2Rs for behavior is largely unknown. Using in situ hybridization and mice expressing green fluorescent protein (GFP) under the Drd2 promoter, we found that D2R expression within the thalamus is enriched in the paraventricular nucleus (PVT) as well as in more ventral midline thalamic nuclei. Within the PVT, D2Rs are inhibitory as their activation inhibits neuronal action potentials in brain slices. Using Cre-dependent anterograde and retrograde viral tracers, we further determined that PVT neurons are reciprocally interconnected with multiple areas of the limbic system including the amygdala and the nucleus accumbens (NAc). Based on these anatomical findings, we analyzed the role of D2Rs in the PVT in behaviors that are supported by these areas and that also have relevance for schizophrenia and drug addiction. Male and female mice with selective overexpression of D2Rs in the PVT showed attenuated cocaine locomotor sensitization, whereas anxiety levels, fear conditioning, sensorimotor gating, and food-motivated behaviors were not affected. These findings suggest the importance of PVT inhibition by D2Rs in modulating the sensitivity to cocaine, a finding that may have novel implications for human drug use.


Evidence for a Mixed Timing and Counting Strategy in Mice Performing a Mechner Counting Task.

  • Kenneth R Light‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2019‎

Numerosity, or the ability to understand and distinguish between discrete quantities, was first formalized for study in animals by Mechner (1958a). Rats had to press one lever (the counting lever) n times to arm food release from pressing a second lever (the reward lever). The only cue that n presses had been made to the counting lever was the animal's representation of how many times it had pressed it. In the years that have passed since, many researchers have modified the task in meaningful ways to attempt to tease apart timing-based and count-based strategies. Strong evidence has amassed that the two are fundamentally different and separable skills but, to date, no study has effectively examined the differential contributions of the two strategies in Mechner's original task. By examining performance mid-trial and correlating it with whole-trial performance, we were able to identify patterns of correlation consistent with counting and timing strategies. Due to the independent nature of these correlation patterns, this technique was uniquely able to provide evidence for strategies that combined both timing and counting components. The results show that most mice demonstrated this combined strategy. This provides direct evidence that mice can and do use numerosity to complete Mechner's original task. A rational agent with fallible estimates of both counts made and time elapsed in making them should use both estimates when deciding when to switch to the second lever.


Egr-1 increases in the prefrontal cortex following training in the context preexposure facilitation effect (CPFE) paradigm.

  • Arun Asok‎ et al.
  • Neurobiology of learning and memory‎
  • 2013‎

The context pre-exposure facilitation effect (CPFE) is a modified form of standard contextual fear conditioning that dissociates learning about the context during a preexposure phase from learning the context-shock association during an immediate shock training phase conducted on separate days. Fear conditioning in the CPFE is an associative process in which only animals that are preexposed to the same context they are later given an immediate shock in demonstrate freezing when tested for conditioned fear memory. Previous research has shown that the hippocampus and amygdala are necessary for different phases of the CPFE, but whether other brain regions are also involved is unknown. The present study examined expression of the immediate-early gene early growth response gene 1 (Egr-1; also called Zif268, Ngfi-a, Krox-24) in the dorsal hippocampus, lateral nucleus of the amygdala, retrosplenial cortex, and several prefrontal cortex regions (infralimbic and prelimbic medial prefrontal cortex, anterior cingulate, and orbitofrontal cortex) following each phase of the CPFE in juvenile rats. Animals preexposed to the conditioning context displayed fear conditioned freezing during a retention test whereas rats preexposed to an alternate context did not. Following context preexposure, Egr-1 mRNA was elevated in context and alternate context exposed animals compared to home-cage control rats in almost all regions analyzed. Following the context-shock training phase, fear conditioned rats displayed significantly more Egr-1 mRNA expression in the infralimbic, prelimbic, and orbitofrontal cortices compared to the alternate context preexposed control rats. These differences in Egr-1 expression were not found in amygdala between the preexposed context and alternate context rats. No sex differences were observed following preexposure or training in any regions analyzed. The findings suggest that increased expression of Egr-1 within the prefrontal cortex is associated with contextual fear conditioning in the CPFE paradigm.


Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition.

  • Sebastien Parnaudeau‎ et al.
  • Neuron‎
  • 2013‎

Cognitive deficits are central to schizophrenia, but the underlying mechanisms still remain unclear. Imaging studies performed in patients point to decreased activity in the mediodorsal thalamus (MD) and reduced functional connectivity between the MD and prefrontal cortex (PFC) as candidate mechanisms. However, a causal link is still missing. We used a pharmacogenetic approach in mice to diminish MD neuron activity and examined the behavioral and physiological consequences. We found that a subtle decrease in MD activity is sufficient to trigger selective impairments in prefrontal-dependent cognitive tasks. In vivo recordings in behaving animals revealed that MD-PFC beta-range synchrony is enhanced during acquisition and performance of a working memory task. Decreasing MD activity interfered with this task-dependent modulation of MD-PFC synchrony, which correlated with impaired working memory. These findings suggest that altered MD activity is sufficient to disrupt prefrontal-dependent cognitive behaviors and could contribute to the cognitive symptoms observed in schizophrenia.


Dopamine D2 receptors modulate the cholinergic pause and inhibitory learning.

  • Eduardo F Gallo‎ et al.
  • Molecular psychiatry‎
  • 2022‎

Cholinergic interneurons (CINs) in the striatum respond to salient stimuli with a multiphasic response, including a pause, in neuronal activity. Slice-physiology experiments have shown the importance of dopamine D2 receptors (D2Rs) in regulating CIN pausing, yet the behavioral significance of the CIN pause and its regulation by dopamine in vivo is still unclear. Here, we show that D2R upregulation in CINs of the nucleus accumbens (NAc) lengthens the pause in CIN activity ex vivo and enlarges a stimulus-evoked decrease in acetylcholine (ACh) levels during behavior. This enhanced dip in ACh levels is associated with a selective deficit in the learning to inhibit responding in a Go/No-Go task. Our data demonstrate, therefore, the importance of CIN D2Rs in modulating the CIN response induced by salient stimuli and point to a role of this response in inhibitory learning. This work has important implications for brain disorders with altered striatal dopamine and ACh function, including schizophrenia and attention-deficit hyperactivity disorder (ADHD).


Developmental impact of glutamate transporter overexpression on dopaminergic neuron activity and stereotypic behavior.

  • Muhammad O Chohan‎ et al.
  • Molecular psychiatry‎
  • 2022‎

Obsessive-compulsive disorder (OCD) is a disabling condition that often begins in childhood. Genetic studies in OCD have pointed to SLC1A1, which encodes the neuronal glutamate transporter EAAT3, with evidence suggesting that increased expression contributes to risk. In mice, midbrain Slc1a1 expression supports repetitive behavior in response to dopaminergic agonists, aligning with neuroimaging and pharmacologic challenge studies that have implicated the dopaminergic system in OCD. These findings suggest that Slc1a1 may contribute to compulsive behavior through altered dopaminergic transmission; however, this theory has not been mechanistically tested. To examine the developmental impact of Slc1a1 overexpression on compulsive-like behaviors, we, therefore, generated a novel mouse model to perform targeted, reversible overexpression of Slc1a1 in dopaminergic neurons. Mice with life-long overexpression of Slc1a1 showed a significant increase in amphetamine (AMPH)-induced stereotypy and hyperlocomotion. Single-unit recordings demonstrated that Slc1a1 overexpression was associated with increased firing of dopaminergic neurons. Furthermore, dLight1.1 fiber photometry showed that these behavioral abnormalities were associated with increased dorsal striatum dopamine release. In contrast, no impact of overexpression was observed on anxiety-like behaviors or SKF-38393-induced grooming. Importantly, overexpression solely in adulthood failed to recapitulate these behavioral phenotypes, suggesting that overexpression during development is necessary to generate AMPH-induced phenotypes. However, doxycycline-induced reversal of Slc1a1/EAAT3 overexpression in adulthood normalized both the increased dopaminergic firing and AMPH-induced responses. These data indicate that the pathologic effects of Slc1a1/EAAT3 overexpression on dopaminergic neurotransmission and AMPH-induced stereotyped behavior are developmentally mediated, and support normalization of EAAT3 activity as a potential treatment target for basal ganglia-mediated repetitive behaviors.


A corticostriatal deficit promotes temporal distortion of automatic action in ageing.

  • Miriam Matamales‎ et al.
  • eLife‎
  • 2017‎

The acquisition of motor skills involves implementing action sequences that increase task efficiency while reducing cognitive loads. This learning capacity depends on specific cortico-basal ganglia circuits that are affected by normal ageing. Here, combining a series of novel behavioural tasks with extensive neuronal mapping and targeted cell manipulations in mice, we explored how ageing of cortico-basal ganglia networks alters the microstructure of action throughout sequence learning. We found that, after extended training, aged mice produced shorter actions and displayed squeezed automatic behaviours characterised by ultrafast oligomeric action chunks that correlated with deficient reorganisation of corticostriatal activity. Chemogenetic disruption of a striatal subcircuit in young mice reproduced age-related within-sequence features, and the introduction of an action-related feedback cue temporarily restored normal sequence structure in aged mice. Our results reveal static properties of aged cortico-basal ganglia networks that introduce temporal limits to action automaticity, something that can compromise procedural learning in ageing.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: