Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).

  • Heather S L Jim‎ et al.
  • Journal of genetics and genome research‎
  • 2015‎

Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10-4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.


No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer.

  • Ovarian Cancer Association Consortium, Breast Cancer Association Consortium, and Consortium of Modifiers of BRCA1 and BRCA2‎ et al.
  • Gynecologic oncology‎
  • 2016‎

Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370.


Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer.

  • Kate Lawrenson‎ et al.
  • Nature communications‎
  • 2015‎

Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.


Risk-stratification of endometrial carcinomas revisited: a combined preoperative and intraoperative scoring system for a reliable prediction of an advanced disease.

  • Taru Tuomi‎ et al.
  • Gynecologic oncology‎
  • 2015‎

The aim of this study is to develop a risk-scoring system for predicting lymph node and distant metastasis in endometrial carcinoma.


HER2 and GATA4 are new prognostic factors for early-stage ovarian granulosa cell tumor-a long-term follow-up study.

  • Anniina Färkkilä‎ et al.
  • Cancer medicine‎
  • 2014‎

Granulosa cell tumors (GCTs) carry a risk of recurrence also at an early stage, but reliable prognostic factors are lacking. We assessed clinicopathological prognostic factors and the prognostic roles of the human epidermal growth factor receptors (HER 2-4) and the transcription factor GATA4 in GCTs. We conducted a long-term follow-up study of 80 GCT patients with a mean follow-up time of 16.8 years. A tumor-tissue microarray was immunohistochemically stained for HER2-4 and GATA4. Expression of HER2-4 mRNA was studied by means of real time polymerase chain reaction and HER2 gene amplification was analyzed by means of silver in situ hybridization. The results were correlated to clinical data on recurrences and survival. We found that GCTs have an indolent prognosis, with 5-year disease-specific survival (DSS) being 97.5%. Tumor recurrence was detected in 24% of the patients at a median of 7.0 years (range 2.6-18 years) after diagnosis. Tumor stage was not prognostic of disease-free survival (DFS). Of the molecular prognostic factors, high-level expression of HER2, and GATA4, and high nuclear atypia were prognostic of shorter DFS. In multivariate analyses, high-level coexpression of HER2 and GATA4 independently predicted DFS (hazard ratio [HR] 8.75, 95% CI 2.20-39.48, P = 0.002). High-level expression of GATA4 also predicted shorter DSS (HR 3.96, 95% CI 1.45-12.57, P = 0.006). In multivariate analyses, however, tumor stage (II-III) and nuclear atypia were independent prognostic factors of DSS. In conclusion HER2 and GATA4 are new molecular prognostic markers of GCT recurrence, which could be utilized to optimize the management and follow-up of patients with early-stage GCTs.


Systematic drug sensitivity testing reveals synergistic growth inhibition by dasatinib or mTOR inhibitors with paclitaxel in ovarian granulosa cell tumor cells.

  • Ulla-Maija Haltia‎ et al.
  • Gynecologic oncology‎
  • 2017‎

Resistance to standard chemotherapy poses a major clinical problem in the treatment of ovarian cancer patients. Adult-type granulosa cell tumor (AGCT) is a unique ovarian cancer subtype for which efficient treatment options are lacking in advanced disease. To this end, systematic drug response and transcriptomics profiling were performed to uncover new therapy options for AGCTs.


Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer.

  • Hui Shen‎ et al.
  • Nature communications‎
  • 2013‎

HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR)=1.13, P=3.1 × 10(-10)) and clear cell (rs11651755 OR=0.77, P=1.6 × 10(-8)) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous other promoters throughout the genome. Different variants in HNF1B associate with risk of serous and clear cell epithelial ovarian cancer; DNA methylation and expression patterns are also notably distinct between these subtypes. These findings underscore distinct mechanisms driving different epithelial ovarian cancer histological subtypes.


Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk.

  • Siddhartha P Kar‎ et al.
  • Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology‎
  • 2015‎

Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations.


Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk.

  • Ganna Chornokur‎ et al.
  • PloS one‎
  • 2015‎

Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.


Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration.

  • Jennifer B Permuth‎ et al.
  • Oncotarget‎
  • 2016‎

RNA editing in mammals is a form of post-transcriptional modification in which adenosine is converted to inosine by the adenosine deaminases acting on RNA (ADAR) family of enzymes. Based on evidence of altered ADAR expression in epithelial ovarian cancers (EOC), we hypothesized that single nucleotide polymorphisms (SNPs) in ADAR genes modify EOC susceptibility, potentially by altering ovarian tissue gene expression. Using directly genotyped and imputed data from 10,891 invasive EOC cases and 21,693 controls, we evaluated the associations of 5,303 SNPs in ADAD1, ADAR, ADAR2, ADAR3, and SND1. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI), with adjustment for European ancestry. We conducted gene-level analyses using the Admixture Maximum Likelihood (AML) test and the Sequence-Kernel Association test for common and rare variants (SKAT-CR). Association analysis revealed top risk-associated SNP rs77027562 (OR (95% CI)= 1.39 (1.17-1.64), P=1.0x10-4) in ADAR3 and rs185455523 in SND1 (OR (95% CI)= 0.68 (0.56-0.83), P=2.0x10-4). When restricting to serous histology (n=6,500), the magnitude of association strengthened for rs185455523 (OR=0.60, P=1.0x10-4). Gene-level analyses revealed that variation in ADAR was associated (P<0.05) with EOC susceptibility, with PAML=0.022 and PSKAT-CR=0.020. Expression quantitative trait locus analysis in EOC tissue revealed significant associations (P<0.05) with ADAR expression for several SNPs in ADAR, including rs1127313 (G/A), a SNP in the 3' untranslated region. In summary, germline variation involving RNA editing genes may influence EOC susceptibility, warranting further investigation of inherited and acquired alterations affecting RNA editing.


Common variants at 19p13 are associated with susceptibility to ovarian cancer.

  • Kelly L Bolton‎ et al.
  • Nature genetics‎
  • 2010‎

Epithelial ovarian cancer (EOC) is the leading cause of death from gynecological malignancy in the developed world, accounting for 4% of the deaths from cancer in women. We performed a three-phase genome-wide association study of EOC survival in 8,951 individuals with EOC (cases) with available survival time data and a parallel association analysis of EOC susceptibility. Two SNPs at 19p13.11, rs8170 and rs2363956, showed evidence of association with survival (overall P = 5 × 10⁻⁴ and P = 6 × 10⁻⁴, respectively), but they did not replicate in phase 3. However, the same two SNPs demonstrated genome-wide significance for risk of serous EOC (P = 3 × 10⁻⁹ and P = 4 × 10⁻¹¹, respectively). Expression analysis of candidate genes at this locus in ovarian tumors supported a role for the BRCA1-interacting gene C19orf62, also known as MERIT40, which contains rs8170, in EOC development.


Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

  • Karoline B Kuchenbaecker‎ et al.
  • Nature genetics‎
  • 2015‎

Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.


GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer.

  • Paul D P Pharoah‎ et al.
  • Nature genetics‎
  • 2013‎

Genome-wide association studies (GWAS) have identified four susceptibility loci for epithelial ovarian cancer (EOC), with another two suggestive loci reaching near genome-wide significance. We pooled data from a GWAS conducted in North America with another GWAS from the UK. We selected the top 24,551 SNPs for inclusion on the iCOGS custom genotyping array. We performed follow-up genotyping in 18,174 individuals with EOC (cases) and 26,134 controls from 43 studies from the Ovarian Cancer Association Consortium. We validated the two loci at 3q25 and 17q21 that were previously found to have associations close to genome-wide significance and identified three loci newly associated with risk: two loci associated with all EOC subtypes at 8q21 (rs11782652, P = 5.5 × 10(-9)) and 10p12 (rs1243180, P = 1.8 × 10(-8)) and another locus specific to the serous subtype at 17q12 (rs757210, P = 8.1 × 10(-10)). An integrated molecular analysis of genes and regulatory regions at these loci provided evidence for functional mechanisms underlying susceptibility and implicated CHMP4C in the pathogenesis of ovarian cancer.


Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31.

  • Jennifer Permuth-Wey‎ et al.
  • Nature communications‎
  • 2013‎

Epithelial ovarian cancer (EOC) has a heritable component that remains to be fully characterized. Most identified common susceptibility variants lie in non-protein-coding sequences. We hypothesized that variants in the 3' untranslated region at putative microRNA (miRNA)-binding sites represent functional targets that influence EOC susceptibility. Here, we evaluate the association between 767 miRNA-related single-nucleotide polymorphisms (miRSNPs) and EOC risk in 18,174 EOC cases and 26,134 controls from 43 studies genotyped through the Collaborative Oncological Gene-environment Study. We identify several miRSNPs associated with invasive serous EOC risk (odds ratio=1.12, P=10(-8)) mapping to an inversion polymorphism at 17q21.31. Additional genotyping of non-miRSNPs at 17q21.31 reveals stronger signals outside the inversion (P=10(-10)). Variation at 17q21.31 is associated with neurological diseases, and our collaboration is the first to report an association with EOC susceptibility. An integrated molecular analysis in this region provides evidence for ARHGAP27 and PLEKHM1 as candidate EOC susceptibility genes.


Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer.

  • Shalaka S Hampras‎ et al.
  • Oncotarget‎
  • 2016‎

Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer.


Prediction of lymphatic dissemination in endometrioid endometrial cancer: Comparison of three risk-stratification models in a single-institution cohort.

  • Taru Tuomi‎ et al.
  • Gynecologic oncology‎
  • 2017‎

To compare the performance characteristics of 3 risk-stratification models, referred to as Mayo, Helsinki and Milwaukee models, in predicting lymphatic dissemination in endometrial cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: