Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 76 papers

Mutations in GRHL2 result in an autosomal-recessive ectodermal Dysplasia syndrome.

  • Gabriela Petrof‎ et al.
  • American journal of human genetics‎
  • 2014‎

Grainyhead-like 2, encoded by GRHL2, is a member of a highly conserved family of transcription factors that play essential roles during epithelial development. Haploinsufficiency for GRHL2 has been implicated in autosomal-dominant deafness, but mutations have not yet been associated with any skin pathology. We investigated two unrelated Kuwaiti families in which a total of six individuals have had lifelong ectodermal defects. The clinical features comprised nail dystrophy or nail loss, marginal palmoplantar keratoderma, hypodontia, enamel hypoplasia, oral hyperpigmentation, and dysphagia. In addition, three individuals had sensorineural deafness, and three had bronchial asthma. Taken together, the features were consistent with an unusual autosomal-recessive ectodermal dysplasia syndrome. Because of consanguinity in both families, we used whole-exome sequencing to search for novel homozygous DNA variants and found GRHL2 mutations common to both families: affected subjects in one family were homozygous for c.1192T>C (p.Tyr398His) in exon 9, and subjects in the other family were homozygous for c.1445T>A (p.Ile482Lys) in exon 11. Immortalized keratinocytes (p.Ile482Lys) showed altered cell morphology, impaired tight junctions, adhesion defects, and cytoplasmic translocation of GRHL2. Whole-skin transcriptomic analysis (p.Ile482Lys) disclosed changes in genes implicated in networks of cell-cell and cell-matrix adhesion. Our clinical findings of an autosomal-recessive ectodermal dysplasia syndrome provide insight into the role of GRHL2 in skin development, homeostasis, and human disease.


Novel spontaneous deletion of artemis exons 10 and 11 in mice leads to T- and B-cell deficiency.

  • Christian Barthels‎ et al.
  • PloS one‎
  • 2013‎

Here we describe a novel, spontaneous, 4035 basepairs long deletion in the DNA cross-link repair 1C (Dclre1c)-locus in C57BL/6-mice, which leads to loss of exons 10 and 11 of the gene encoding for Artemis, a protein involved into V(D) J-recombination of antigen receptors of T and B cells. While several spontaneous mutations of Artemis have been described to cause SCID in humans, in mice, only targeted deletions by knockout technology are known to cause the same phenotype so far. The deletion we observed causes a loss of Artemis function in the C57BL/6 strain and, consequently, the absence of T and B cells, in presence of normal numbers of NK cells and cells of the myeloid lineage. Thus, for the first time we present T(-)B(-)NK(+) severe combined immunodeficiency (SCID) phenotype after spontaneously occurring modification of Artemis gene in mice. Our mouse model may serve as a valuable tool to study mechanisms as well as potential therapies of SCID in humans.


Human TYK2 deficiency: Mycobacterial and viral infections without hyper-IgE syndrome.

  • Alexandra Y Kreins‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Autosomal recessive, complete TYK2 deficiency was previously described in a patient (P1) with intracellular bacterial and viral infections and features of hyper-IgE syndrome (HIES), including atopic dermatitis, high serum IgE levels, and staphylococcal abscesses. We identified seven other TYK2-deficient patients from five families and four different ethnic groups. These patients were homozygous for one of five null mutations, different from that seen in P1. They displayed mycobacterial and/or viral infections, but no HIES. All eight TYK2-deficient patients displayed impaired but not abolished cellular responses to (a) IL-12 and IFN-α/β, accounting for mycobacterial and viral infections, respectively; (b) IL-23, with normal proportions of circulating IL-17(+) T cells, accounting for their apparent lack of mucocutaneous candidiasis; and (c) IL-10, with no overt clinical consequences, including a lack of inflammatory bowel disease. Cellular responses to IL-21, IL-27, IFN-γ, IL-28/29 (IFN-λ), and leukemia inhibitory factor (LIF) were normal. The leukocytes and fibroblasts of all seven newly identified TYK2-deficient patients, unlike those of P1, responded normally to IL-6, possibly accounting for the lack of HIES in these patients. The expression of exogenous wild-type TYK2 or the silencing of endogenous TYK2 did not rescue IL-6 hyporesponsiveness, suggesting that this phenotype was not a consequence of the TYK2 genotype. The core clinical phenotype of TYK2 deficiency is mycobacterial and/or viral infections, caused by impaired responses to IL-12 and IFN-α/β. Moreover, impaired IL-6 responses and HIES do not appear to be intrinsic features of TYK2 deficiency in humans.


Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes.

  • Maximilian Witzel‎ et al.
  • Nature genetics‎
  • 2017‎

We identify SMARCD2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily D, member 2), also known as BAF60b (BRG1/Brahma-associated factor 60b), as a critical regulator of myeloid differentiation in humans, mice, and zebrafish. Studying patients from three unrelated pedigrees characterized by neutropenia, specific granule deficiency, myelodysplasia with excess of blast cells, and various developmental aberrations, we identified three homozygous loss-of-function mutations in SMARCD2. Using mice and zebrafish as model systems, we showed that SMARCD2 controls early steps in the differentiation of myeloid-erythroid progenitor cells. In vitro, SMARCD2 interacts with the transcription factor CEBPɛ and controls expression of neutrophil proteins stored in specific granules. Defective expression of SMARCD2 leads to transcriptional and chromatin changes in acute myeloid leukemia (AML) human promyelocytic cells. In summary, SMARCD2 is a key factor controlling myelopoiesis and is a potential tumor suppressor in leukemia.


Reduced Function and Diversity of T Cell Repertoire and Distinct Clinical Course in Patients With IL7RA Mutation.

  • Atar Lev‎ et al.
  • Frontiers in immunology‎
  • 2019‎

The alpha subunit of IL-7 receptor (IL7R7α) is critical for the differentiation of T cells, specifically for the development and maintenance of γδT cells. Mutations in IL7RA are associated with Severe Combined Immunodeficiency (SCID). Infants with IL7RA deficiency can be identified through newborn screening program. We aimed at defining the immunological and genetic parameters that are directly affected by the IL7RA mutation on the immune system of five unrelated patients which were identified by our newborn screening program for SCID. The patients were found to have a novel identical homozygote mutation in IL7RA (n.c.120 C>G; p.F40L). Both surface expression of IL7Rα and functionality of IL-7 signaling were impaired in patients compared to controls. Structural modeling demonstrated instability of the protein structure due to the mutation. Lastly the TRG immune repertoire of the patients showed reduced diversity, increased clonality and differential CDR3 characteristics. Interestingly, the patients displayed significant different clinical outcome with two displaying severe clinical picture of immunodeficiency and three had spontaneous recovery. Our data supports that the presented IL7RA mutation affects the IL-7 signaling and shaping of the TRG repertoire, reinforcing the role of IL7RA in the immune system, while non-genetic factors may exist that attribute to the ultimate clinical presentation and disease progression.


Enhanced Collagen Deposition in the Duodenum of Patients with Hyaline Fibromatosis Syndrome and Protein Losing Enteropathy.

  • Jorik M van Rijn‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Hyaline fibromatosis syndrome (HFS), resulting from ANTXR2 mutations, is an ultra-rare disease that causes intestinal lymphangiectasia and protein-losing enteropathy (PLE). The mechanisms leading to the gastrointestinal phenotype in these patients are not well defined. We present two patients with congenital diarrhea, severe PLE and unique clinical features resulting from deleterious ANTXR2 mutations. Intestinal organoids were generated from one of the patients, along with CRISPR-Cas9 ANTXR2 knockout, and compared with organoids from two healthy controls. The ANTXR2-deficient organoids displayed normal growth and polarity, compared to controls. Using an anthrax-toxin assay we showed that the c.155C>T mutation causes loss-of-function of ANTXR2 protein. An intrinsic defect of monolayer formation in patient-derived or ANTXR2KO organoids was not apparent, suggesting normal epithelial function. However, electron microscopy and second harmonic generation imaging showed abnormal collagen deposition in duodenal samples of these patients. Specifically, collagen VI, which is known to bind ANTXR2, was highly expressed in the duodenum of these patients. In conclusion, despite resistance to anthrax-toxin, epithelial cell function, and specifically monolayer formation, is intact in patients with HFS. Nevertheless, loss of ANTXR2-mediated signaling leads to collagen VI accumulation in the duodenum and abnormal extracellular matrix composition, which likely plays a role in development of PLE.


Visual search in ADHD, ASD and ASD + ADHD: overlapping or dissociating disorders?

  • D Seernani‎ et al.
  • European child & adolescent psychiatry‎
  • 2021‎

Recent debates in the literature discuss commonalities between Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) at multiple levels of putative causal networks. This debate requires systematic comparisons between these disorders that have been studied in isolation in the past, employing potential markers of each disorder to be investigated in tandem. The present study, choose superior local processing, typical to ASD, and increased Intra-Subject Variability (ISV), typical to ADHD, for a head-to-head comparison of the two disorders, while also considering the comorbid cases. It directly examined groups of participants aged 10-13 years with ADHD, ASD with (ASD+) or without (ASD-) comorbid ADHD and a typically developing (TD) group (total N = 85). A visual search task consisting of an array of paired words was designed. The participants needed to find the specific pair of words, where the first word in the pair was the cue word. This visual search task was selected to compare these groups on overall search performance and trial-to-trial variability of search performance (i.e., ISV). Additionally, scanpath analysis was also carried out using Recurrence Quantification Analysis (RQA) and the Multi-Match Model. Results show that only the ASD- group exhibited superior search performance; whereas, only the groups with ADHD symptoms showed increased ISV. These findings point towards a double dissociation between ASD and ADHD, and argue against an overlap between ASD and ADHD.


Loss of murine Gfi1 causes neutropenia and induces osteoporosis depending on the pathogen load and systemic inflammation.

  • Sven Geissler‎ et al.
  • PloS one‎
  • 2018‎

Gfi1 is a key molecule in hematopoietic lineage development and mutations in GFI1 cause severe congenital neutropenia (SCN). Neutropenia is associated with low bone mass, but the underlying mechanisms are poorly characterized. Using Gfi1 knock-out mice (Gfi1-ko/ko) as SCN model, we studied the relationship between neutropenia and bone mass upon different pathogen load conditions. Our analysis reveals that Gfi1-ko/ko mice kept under strict specific pathogen free (SPF) conditions demonstrate normal bone mass and survival. However, Gfi1-ko/ko mice with early (nonSPF) or late (SPF+nonSPF) pathogen exposure develop low bone mass. Gfi1-ko/ko mice demonstrate a striking rise of systemic inflammatory markers according to elevated pathogen exposure and reduced bone mass. Elevated inflammatory cytokines include for instance Il-1b, Il-6, and Tnf-alpha that regulate osteoclast development. We conclude that low bone mass, due to low neutrophil counts, is caused by the degree of systemic inflammation promoting osteoclastogenesis.


Lineage-Specific Chimerism and Outcome After Hematopoietic Stem Cell Transplantation for DOCK8 Deficiency.

  • Johannes Raedler‎ et al.
  • Journal of clinical immunology‎
  • 2021‎

Bi-allelic variants in the dedicator of cytokinesis 8 (DOCK8) gene cause a combined immunodeficiency, characterized by recurrent sinopulmonary and skin infections, food allergies, eczema, eosinophilia, and elevated IgE. Long-term outcome is poor given susceptibility to infections, malignancy, and vascular complications. Allogeneic hematopoietic stem cell transplantation is currently the only curative treatment option and has shown promising outcome. The impact of mixed chimerism on long-term outcome is unclear. We reasoned that reversal of disease phenotype would depend on cell lineage-specific chimerism. DOCK8 variants were confirmed by Sanger and/or exome sequencing and immunoblot and/or intracellular flow cytometry. Donor chimerism was analyzed by XY-fluorescence in situ hybridization or quantitative short tandem repeat PCR. Outcome was assessed by laboratory tests, lymphocyte subsets, intracellular DOCK8 protein flow cytometry, T-cell proliferation analysis, and multiparameter immunoblot allergy screening. We report on nine patients, four of whom with mixed chimerism, with a median follow-up of 78 months after transplantation. Overall, we report successful transplantation with improvement of susceptibility to infections and allergies, and resolution of eczema in all patients. Immunological outcome in patients with mixed chimerism suggests a selective advantage for wild-type donor T-cells but lower donor B-cell chimerism possibly results in a tendency to hypogammaglobulinemia. No increased infectious and allergic complications were associated with mixed chimerism. Aware of the relatively small cohort size, we could not demonstrate a consistent detrimental effect of mixed chimerism on clinical outcomes. We nevertheless advocate aiming for complete donor chimerism in treating DOCK8 deficiency, but recommend reduced toxicity conditioning.


LAMTOR2 (p14) Controls B Cell Differentiation by Orchestrating Endosomal BCR Trafficking.

  • Marcin Łyszkiewicz‎ et al.
  • Frontiers in immunology‎
  • 2019‎

B-cell development and function depend on stage-specific signaling through the B-cell antigen receptor (BCR). Signaling and intracellular trafficking of the BCR are connected, but the molecular mechanisms of this link are incompletely understood. Here, we investigated the role of the endosomal adaptor protein and member of the LAMTOR/Ragulator complex LAMTOR2 (p14) in B-cell development. Efficient conditional deletion of LAMTOR2 at the pre-B1 stage using mb1-Cre mice resulted in complete developmental arrest. Deletion of LAMTOR2 using Cd19-Cre mice permitted analysis of residual B cells at later developmental stages, revealing that LAMTOR2 was critical for the generation and activation of mature B lymphocytes. Loss of LAMTOR2 resulted in aberrant BCR signaling due to delayed receptor internalization and endosomal trafficking. In conclusion, we identify LAMTOR2 as critical regulator of BCR trafficking and signaling that is essential for early B-cell development in mice.


The effect of gentamicin-induced readthrough on a novel premature termination codon of CD18 leukocyte adhesion deficiency patients.

  • Amos J Simon‎ et al.
  • PloS one‎
  • 2010‎

Leukocyte adhesion deficiency 1 (LAD1) is an inherited disorder of neutrophil function. Nonsense mutations in the affected CD18 (ITB2) gene have rarely been described. In other genes containing such mutations, treatments with aminoglycoside types of antibiotics (e.g., gentamicin) were reported to partially correct the premature protein termination, by induction of readthrough mechanism.


Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function.

  • Dror S Shouval‎ et al.
  • Immunity‎
  • 2014‎

Intact interleukin-10 receptor (IL-10R) signaling on effector and T regulatory (Treg) cells are each independently required to maintain immune tolerance. Here we show that IL-10 sensing by innate immune cells, independent of its effects on T cells, was critical for regulating mucosal homeostasis. Following wild-type (WT) CD4(+) T cell transfer, Rag2(-/-)Il10rb(-/-) mice developed severe colitis in association with profound defects in generation and function of Treg cells. Moreover, loss of IL-10R signaling impaired the generation and function of anti-inflammatory intestinal and bone-marrow-derived macrophages and their ability to secrete IL-10. Importantly, transfer of WT but not Il10rb(-/-) anti-inflammatory macrophages ameliorated colitis induction by WT CD4(+) T cells in Rag2(-/-)Il10rb(-/-) mice. Similar alterations in the generation and function of anti-inflammatory macrophages were observed in IL-10R-deficient patients with very early onset inflammatory bowel disease. Collectively, our studies define innate immune IL-10R signaling as a key factor regulating mucosal immune homeostasis in mice and humans.


Inferior Frontal Gyrus Volume Loss Distinguishes Between Autism and (Comorbid) Attention-Deficit/Hyperactivity Disorder-A FreeSurfer Analysis in Children.

  • Kathrin Nickel‎ et al.
  • Frontiers in psychiatry‎
  • 2018‎

Objective: Autism spectrum (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders with a high rate of comorbidity. To date, diagnosis is based on clinical presentation and distinct reliable biomarkers have been identified neither for ASD nor ADHD. Most previous neuroimaging studies investigated ASD and ADHD separately. Method: To address the question of structural brain differences between ASD and ADHD, we performed FreeSurfer analysis in a sample of children with ADHD (n = 30), with high-functioning ASD (n = 14), with comorbid high-functioning ASD and ADHD (n = 15), and of typically developed controls (TD; n = 36). With FreeSurfer, an automated brain imaging processing and analyzing suite, we reconstructed the cerebral cortex and calculated gray matter volumes as well as cortical surface parameters in terms of cortical thickness and mean curvature. Results: A significant main effect of the factor ADHD was detected for the left inferior frontal gyrus (Pars orbitalis) volume, with the ADHD group exhibiting smaller Pars orbitalis volumes. Dimensional measures of autism (SRS total raw score) and ADHD (DISYPS-II FBB-ADHD score) had no significant influence on the left Pars orbitalis volume. Both, ASD and ADHD tended to have an effect on cortical thickness or mean curvature, which did not survive correction for multiple comparisons. Conclusion: Our results underline that ADHD rather than ASD is associated with volume loss in the left inferior frontal gyrus (Pars orbitalis). This area might play a relevant role in modulating symptoms of inattention and/or impulsivity in ADHD. The effect of comorbid ADHD in ASD samples and vice versa, on cortical thickness and mean curvature, requires further investigation in larger samples.


MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.

  • Robert T McGibbon‎ et al.
  • Biophysical journal‎
  • 2015‎

As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python.


Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense.

  • Gerald Wirnsberger‎ et al.
  • Nature genetics‎
  • 2014‎

Neutrophils are key innate immune effector cells that are essential to fighting bacterial and fungal pathogens. Here we report that mice carrying a hematopoietic lineage-specific deletion of Jagn1 (encoding Jagunal homolog 1) cannot mount an efficient neutrophil-dependent immune response to the human fungal pathogen Candida albicans. Global glycobiome analysis identified marked alterations in the glycosylation of proteins involved in cell adhesion and cytotoxicity in Jagn1-deficient neutrophils. Functional analysis confirmed marked defects in neutrophil migration in response to Candida albicans infection and impaired formation of cytotoxic granules, as well as defective myeloperoxidase release and killing of Candida albicans. Treatment with granulocyte/macrophage colony-stimulating factor (GM-CSF) protected mutant mice from increased weight loss and accelerated mortality after Candida albicans challenge. Notably, GM-CSF also restored the defective fungicidal activity of bone marrow cells from humans with JAGN1 mutations. These data directly identify Jagn1 (JAGN1 in humans) as a new regulator of neutrophil function in microbial pathogenesis and uncover a potential treatment option for humans.


Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing.

  • Friederike S Rossmann‎ et al.
  • PLoS pathogens‎
  • 2015‎

The microbiome and the phage meta-genome within the human gut are influenced by antibiotic treatments. Identifying a novel mechanism, here we demonstrate that bacteria use the universal communication molecule AI-2 to induce virulence genes and transfer them via phage release. High concentrations (i.e. 100 μM) of AI-2 promote dispersal of bacteria from already established biofilms, and is associated with release of phages capable of infecting other bacteria. Enterococcus faecalis V583ΔABC harbours 7 prophages in its genome, and a mutant deficient in one of these prophages (i.e. prophage 5) showed a greatly reduced dispersal of biofilm. Infection of a probiotic E. faecalis strain without lytic prophages with prophage 5 resulted in increased biofilm formation and also in biofilm dispersal upon induction with AI-2. Infection of the probiotic E. faecalis strain with phage-containing supernatants released through AI-2 from E. faecalis V583ΔABC resulted in a strong increase in pathogenicity of this strain. The polylysogenic probiotic strain was also more virulent in a mouse sepsis model and a rat endocarditis model. Both AI-2 and ciprofloxacin lead to phage release, indicating that conditions in the gastrointestinal tract of hospitalized patients treated with antibiotics might lead to distribution of virulence genes to apathogenic enterococci and possibly also to other commensals or even to beneficial probiotic strains.


p14-MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis.

  • David Teis‎ et al.
  • The Journal of cell biology‎
  • 2006‎

The extracellular signal-regulated kinase (ERK) cascade regulates proliferation, differentiation, and survival in multicellular organisms. Scaffold proteins regulate intracellular signaling by providing critical spatial and temporal specificity. The scaffold protein MEK1 (mitogen-activated protein kinase and ERK kinase 1) partner (MP1) is localized to late endosomes by the adaptor protein p14. Using conditional gene disruption of p14 in mice, we now demonstrate that the p14-MP1-MEK1 signaling complex regulates late endosomal traffic and cellular proliferation. This function its essential for early embryogenesis and during tissue homeostasis, as revealed by epidermis-specific deletion of p14. These findings show that endosomal p14-MP1-MEK1 signaling has a specific and essential function in vivo and, therefore, indicate that regulation of late endosomal traffic by extracellular signals is required to maintain tissue homeostasis.


Inadequate Activation of γδT- and B-cells in Patient with Wiskott-Aldrich Syndrome (WAS) Portrayed by TRG and IGH Repertoire Analyses.

  • Dahlia Palevski‎ et al.
  • Journal of clinical immunology‎
  • 2023‎

Patients with Wiskott-Aldrich syndrome (WAS) harbor mutations in the WAS gene and suffer from immunodeficiency, microthrombocytopenia, and eczema. T-cells play an important role in immune response in the skin and the γδT-cells have an important role in skin homeostasis. Since WAS patients often present with eczema, we wanted to examine whether the T-cell receptor gamma (TRG) repertoire of the γδT-cells is affected in these patients. In addition, the immunoglobulin heavy chain (IGH) repertoire from genomic DNA of WAS patients was not yet studied. Thus, we sought to determine the effects that specific WAS mutations from our patients have in shaping the TRG and IGH immune repertoires. We collected clinical and genetic data on four WAS patients, each harboring a different mutation in the WAS gene. Using next-generation sequencing (NGS), we analyzed their TRG and IGH repertoires using genomic DNA isolated from their peripheral blood. We analyzed the TRG and IGH repertoire sequences to show repertoire restriction, clonal expansions, preferential utilization of specific V genes, and unique characteristics of the antigen binding region in WAS patients with eczema compared to healthy controls. Both the TRG and IGH repertoire showed diverse repertoire comparable to healthy controls on one the hand, and on the other hand, the IGH repertoire showed increased diversity, more evenly distributed repertoire and immaturity of the antigen binding region. Thus, we demonstrate by analyzing the repertoire based on genomic DNA, the various effect that WAS mutations have in shaping the TRG and IGH adaptive immune repertoires.


HAX1-dependent control of mitochondrial proteostasis governs neutrophil granulocyte differentiation.

  • Yanxin Fan‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

The relevance of molecular mechanisms governing mitochondrial proteostasis to the differentiation and function of hematopoietic and immune cells is largely elusive. Through dissection of the network of proteins related to HCLS1-associated protein X-1, we defined a potentially novel functional CLPB/HAX1/(PRKD2)/HSP27 axis with critical importance for the differentiation of neutrophil granulocytes and, thus, elucidated molecular and metabolic mechanisms underlying congenital neutropenia in patients with HAX1 deficiency as well as bi- and monoallelic mutations in CLPB. As shown by stable isotope labeling by amino acids in cell culture (SILAC) proteomics, CLPB and HAX1 control the balance of mitochondrial protein synthesis and persistence crucial for proper mitochondrial function. Impaired mitochondrial protein dynamics are associated with decreased abundance of the serine-threonine kinase PRKD2 and HSP27 phosphorylated on serines 78 and 82. Cellular defects in HAX1-/- cells can be functionally reconstituted by HSP27. Thus, mitochondrial proteostasis emerges as a critical molecular and metabolic mechanism governing the differentiation and function of neutrophil granulocytes.


G23D: Online tool for mapping and visualization of genomic variants on 3D protein structures.

  • Oz Solomon‎ et al.
  • BMC genomics‎
  • 2016‎

Evaluation of the possible implications of genomic variants is an increasingly important task in the current high throughput sequencing era. Structural information however is still not routinely exploited during this evaluation process. The main reasons can be attributed to the partial structural coverage of the human proteome and the lack of tools which conveniently convert genomic positions, which are the frequent output of genomic pipelines, to proteins and structure coordinates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: