Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells.

  • Ge Ma‎ et al.
  • Immunity‎
  • 2011‎

Myeloid-derived suppressor cells (MDSCs) bear characteristics of precursors for both M1 and M2 macrophages. The molecular mechanism underlying the differentiation into M1 and M2 macrophages and the relationship of this differentiation to antitumor responses remains largely undefined. Herein, we investigate the potential function of paired immunoglobulin-like receptor B (PIR-B), also known as leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3) in MDSC differentiation, and its role in tumor-induced immunity. Our studies indicated that MDSCs genetically ablated for PIR-B (Lilrb3(-/-)) underwent a specific transition to M1-like cells when entering the periphery from bone marrow, resulting in decreased suppressive function, regulatory T cell activation activity, primary tumor growth, and lung metastases. Activation of Toll-like receptor (TLR), signal transducers, and activators of transcription 1 (STAT1), and nuclear factor-kappa B (NF-κB) signaling in Lilrb3(-/-) MDSC promoted the acquisition of M1 phenotype. Inhibition of the PIR-B signaling pathway promoted MDSC differentiation into M1 macrophages.


Splenic Dendritic Cells Survey Red Blood Cells for Missing Self-CD47 to Trigger Adaptive Immune Responses.

  • Tangsheng Yi‎ et al.
  • Immunity‎
  • 2015‎

Sheep red blood cells (SRBCs) have long been used as a model antigen for eliciting systemic immune responses, yet the basis for their adjuvant activity has been unknown. Here, we show that SRBCs failed to engage the inhibitory mouse SIRPα receptor on splenic CD4(+) dendritic cells (DCs), and this failure led to DC activation. Removal of the SIRPα ligand, CD47, from self-RBCs was sufficient to convert them into an adjuvant for adaptive immune responses. DC capture of Cd47(-/-) RBCs and DC activation occurred within minutes in a Src-family-kinase- and CD18-integrin-dependent manner. These findings provide an explanation for the adjuvant mechanism of SRBCs and reveal that splenic DCs survey blood cells for missing self-CD47, a process that might contribute to detecting and mounting immune responses against pathogen-infected RBCs.


Distinct roles for neutrophils and dendritic cells in inflammation and autoimmunity in motheaten mice.

  • Clare L Abram‎ et al.
  • Immunity‎
  • 2013‎

The motheaten mouse has long served as a paradigm for complex autoimmune and inflammatory disease. Null mutations in Ptpn6, which encodes the nonreceptor protein-tyrosine phosphatase Shp1, cause the motheaten phenotype. However, Shp1 regulates multiple signaling pathways in different hematopoietic cell types, so the cellular and molecular mechanism of autoimmunity and inflammation in the motheaten mouse has remained unclear. By using floxed Ptpn6 mice, we dissected the contribution of innate immune cells to the motheaten phenotype. Ptpn6 deletion in neutrophils resulted in cutaneous inflammation, but not autoimmunity, providing an animal model of human neutrophilic dermatoses. By contrast, dendritic cell deletion caused severe autoimmunity, without inflammation. Genetic and biochemical analysis showed that inflammation was caused by enhanced neutrophil integrin signaling through Src-family and Syk kinases, whereas autoimmunity resulted from exaggerated MyD88-dependent signaling in dendritic cells. Our data demonstrate that disruption of distinct Shp1-regulated pathways in different cell types combine to cause motheaten disease.


Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling.

  • Jing W Zhu‎ et al.
  • Immunity‎
  • 2008‎

The receptor-type protein tyrosine phosphatase (RPTP) CD148 is thought to have an inhibitory function in signaling and proliferation in nonhematopoietic cells. However, its role in the immune system has not been thoroughly studied. Our analysis of CD148 loss-of-function mice showed that CD148 has a positive regulatory function in B cells and macrophages, similar to the role of CD45 as a positive regulator of Src family kinases (SFKs). Analysis of CD148 and CD45 doubly deficient B cells and macrophages revealed hyperphosphorylation of the C-terminal inhibitory tyrosine of SFKs accompanied by substantial alterations in B and myeloid lineage development and defective immunoreceptor signaling. Because these findings suggest the C-terminal tyrosine of SFKs is a common substrate for both CD148 and CD45 phosphatases and imply a level of redundancy not previously appreciated, a reassessment of the function of CD45 in the B and myeloid lineages based on prior data from the CD45-deficient mouse is warranted.


Positive Regulation of Lyn Kinase by CD148 Is Required for B Cell Receptor Signaling in B1 but Not B2 B Cells.

  • Katarzyna M Skrzypczynska‎ et al.
  • Immunity‎
  • 2016‎

B1 and B2 B cells differ in their ability to respond to T-cell-independent (TI) antigens. Here we report that the Src-family kinase (SFK) regulator CD148 has a unique and critical role in the initiation of B1 but not B2 cell antigen receptor signaling. CD148 loss-of-function mice were found to have defective B1 B-cell-mediated antibody responses against the T-cell-independent antigens NP-ficoll and Pneumovax 23 and had impaired selection of the B1 B cell receptor (BCR) repertoire. These deficiencies were associated with a decreased ability of B1 B cells to induce BCR signaling downstream of the SFK Lyn. Notably, Lyn appeared to be selectively regulated by CD148 and loss of this SFK resulted in opposite signaling phenotypes in B1 and B2 B cells. These findings reveal that the function and regulation of Lyn during B1 cell BCR signaling is distinct from other B cell subsets.


Receptor-like tyrosine phosphatases CD45 and CD148 have distinct functions in chemoattractant-mediated neutrophil migration and response to S. aureus.

  • Jing W Zhu‎ et al.
  • Immunity‎
  • 2011‎

Neutrophils, critical innate immune effectors, use bacterial-derived chemoattractant-induced G protein-coupled receptor (GPCR) signaling for their pursuit of bacteria. Tyrosine phosphorylation pathways and receptor-like tyrosine phosphatases (RPTPs) are rarely considered in chemoattractant-mediated GPCR signaling. Here, we report that two RPTPs, CD45 and CD148, previously shown to share redundant roles in positively regulating Src family kinases (SFKs) in immunoreceptor signaling pathways in B cells and macrophages, are critical in the neutrophil response to S. aureus infection and, surprisingly, in chemoattractant-mediated chemotaxis. Remarkably, deficiency in either of these RPTPs influenced neutrophil GPCR responses in unique ways. Our results reveal that CD45 positively while CD148 positively and negatively regulate GPCR function and proximal signals including Ca(2+), phosphatidylinositol 3'OH kinase (PI3K), and phospho-extracellular regulated kinase (pERK) activity. Moreover, our results suggest that CD45 and CD148 preferentially target different SFK members (Hck and Fgr versus Lyn, respectively) to positively and negatively regulate GPCR pathways.


Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4⁺ T cells.

  • James M Gardner‎ et al.
  • Immunity‎
  • 2013‎

The autoimmune regulator (Aire) is essential for prevention of autoimmunity; its role is best understood in the thymus, where it promotes self-tolerance through tissue-specific antigen (TSA) expression. Recently, extrathymic Aire-expressing cells (eTACs) have been described in murine secondary lymphoid organs, but the identity of such cells and their role in immune tolerance remains unclear. Here we have shown that eTACs are a discrete major histocompatibility complex class II (MHC II)(hi), CD80(lo), CD86(lo), epithelial cell adhesion molecule (EpCAM)(hi), CD45(lo) bone marrow-derived peripheral antigen-presenting cell (APC) population. We also have demonstrated that eTACs can functionally inactivate CD4⁺ T cells through a mechanism that does not require regulatory T cells (Treg) and is resistant to innate inflammatory stimuli. Together, these findings further define eTACs as a distinct tolerogenic cell population in secondary lymphoid organs.


CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development.

  • Julie Zikherman‎ et al.
  • Immunity‎
  • 2010‎

The kinase-phosphatase pair Csk and CD45 reciprocally regulate phosphorylation of the inhibitory tyrosine of the Src family kinases Lck and Fyn. T cell receptor (TCR) signaling and thymic development require CD45 expression but proceed constitutively in the absence of Csk. Here, we show that relative titration of CD45 and Csk expression reveals distinct regulation of basal and inducible TCR signaling during thymic development. Low CD45 expression is sufficient to rescue inducible TCR signaling and positive selection, whereas high expression is required to reconstitute basal TCR signaling and beta selection. CD45 has a dual positive and negative regulatory role during inducible but not basal TCR signaling. By contrast, Csk titration regulates basal but not inducible signaling. High physiologic expression of CD45 is thus required for two reasons-to downmodulate inducible TCR signaling during positive selection and to counteract Csk during basal TCR signaling.


Leishmania Uses Mincle to Target an Inhibitory ITAM Signaling Pathway in Dendritic Cells that Dampens Adaptive Immunity to Infection.

  • Salvador Iborra‎ et al.
  • Immunity‎
  • 2016‎

C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c+ cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self.


Spleen tyrosine kinase Syk is necessary for E-selectin-induced alpha(L)beta(2) integrin-mediated rolling on intercellular adhesion molecule-1.

  • Alexander Zarbock‎ et al.
  • Immunity‎
  • 2007‎

Engagement of neutrophils by E-selectin results in integrin activation. Here, we investigated primary mouse neutrophils in whole blood by using intravital microscopy and autoperfused flow chambers. Slow rolling on E-selectin coimmobilized with intercellular adhesion molecule-1 (ICAM-1) required P-selectin glycoprotein ligand (PSGL)-1, was dependent on alpha(L)beta(2) integrin (LFA-1), and required continuous E-selectin engagement. Slow rolling was abolished by pharmacological blockade of spleen tyrosine kinase (Syk) and was absent in Syk(-/-) bone-marrow chimeric mice. Treatment with tumor necrosis factor-alpha lowered rolling velocity further and induced CXC chemokine ligand-1 (CXCL1) and CXC chemokine receptor-2 (CXCR2)-dependent leukocyte arrest on E-selectin and ICAM-1. Arrest but not rolling was blocked by an allosteric inhibitor of LFA-1 activation. Neutrophil recruitment in a thioglycollate-induced peritonitis model was almost completely inhibited in Selplg(-/-) mice or Syk(-/-) bone-marrow chimeras treated with pertussis toxin. This identifies a second neutrophil-activation pathway that is as important as activation through G protein-coupled receptors (GPCRs).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: