Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Use of Alignment-Free Phylogenetics for Rapid Genome Sequence-Based Typing of Helicobacter pylori Virulence Markers and Antibiotic Susceptibility.

  • Arnoud H M van Vliet‎ et al.
  • Journal of clinical microbiology‎
  • 2015‎

Whole-genome sequencing is becoming a leading technology in the typing and epidemiology of microbial pathogens, but the increase in genomic information necessitates significant investment in bioinformatic resources and expertise, and currently used methodologies struggle with genetically heterogeneous bacteria such as the human gastric pathogen Helicobacter pylori. Here we demonstrate that the alignment-free analysis method feature frequency profiling (FFP) can be used to rapidly construct phylogenetic trees of draft bacterial genome sequences on a standard desktop computer and that coupling with in silico genotyping methods gives useful information for comparative and clinical genomic and molecular epidemiology applications. FFP-based phylogenetic trees of seven gastric Helicobacter species matched those obtained by analysis of 16S rRNA genes and ribosomal proteins, and FFP- and core genome single nucleotide polymorphism-based analysis of 63 H. pylori genomes again showed comparable phylogenetic clustering, consistent with genomotypes assigned by using multilocus sequence typing (MLST). Analysis of 377 H. pylori genomes highlighted the conservation of genomotypes and linkage with phylogeographic characteristics and predicted the presence of an incomplete or nonfunctional cag pathogenicity island in 18/276 genomes. In silico analysis of antibiotic susceptibility markers suggests that most H. pylori hspAmerind and hspEAsia isolates are predicted to carry the T2812C mutation potentially conferring low-level clarithromycin resistance, while levels of metronidazole resistance were similar in all multilocus sequence types. In conclusion, the use of FFP phylogenetic clustering and in silico genotyping allows determination of genome evolution and phylogeographic clustering and can contribute to clinical microbiology by genomotyping for outbreak management and the prediction of pathogenic potential and antibiotic susceptibility.


A PAS domain-containing regulator controls flagella-flagella interactions in Campylobacter jejuni.

  • Mark Reuter‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

The bipolar flagella of the foodborne bacterial pathogen Campylobacter jejuni confer motility, which is essential for virulence. The flagella of C. jejuni are post-translationally modified, but how this process is controlled is not well understood. In this work, we have identified a novel PAS-domain containing regulatory system, which modulates flagella-flagella interactions in C. jejuni. Inactivation of the cj1387c gene, encoding a YheO-like PAS6 domain linked to a helix-turn-helix domain, resulted in the generation of a tightly associated "cell-train" morphotype, where up to four cells were connected by their flagella. The morphotype was fully motile, resistant to vortexing, accompanied by increased autoagglutination, and was not observed in aflagellated cells. The Δcj1387c mutant displayed increased expression of the adjacent Cj1388 protein, which comprises of a single endoribonuclease L-PSP domain. Comparative genomics showed that cj1387c (yheO) orthologs in bacterial genomes are commonly linked to an adjacent cj1388 ortholog, with some bacteria, including C. jejuni, containing another cj1388-like gene (cj0327). Inactivation of the cj1388 and cj0327 genes resulted in decreased autoagglutination in Tween-20-supplemented media. The Δcj1388 and Δcj0327 mutants were also attenuated in a Galleria larvae-based infection model. Finally, substituting the sole cysteine in Cj1388 for serine prevented Cj1388 dimerization in non-reducing conditions, and resulted in decreased autoagglutination in the presence of Tween-20. We hypothesize that Cj1388 and Cj0327 modulate post-translational modification of the flagella through yet unidentified mechanisms, and propose naming Cj1387 the Campylobacter Flagella Interaction Regulator CfiR, and the Cj1388 and Cj0327 protein as CfiP and CfiQ, respectively.


Domestication of Campylobacter jejuni NCTC 11168.

  • Ben Pascoe‎ et al.
  • Microbial genomics‎
  • 2019‎

Reference and type strains of well-known bacteria have been a cornerstone of microbiology research for decades. The sharing of well-characterized isolates among laboratories has run in parallel with research efforts and enhanced the reproducibility of experiments, leading to a wealth of knowledge about trait variation in different species and the underlying genetics. Campylobacter jejuni strain NCTC 11168, deposited at the National Collection of Type Cultures in 1977, has been adopted widely as a reference strain by researchers worldwide and was the first Campylobacter for which the complete genome was published (in 2000). In this study, we collected 23 C. jejuni NCTC 11168 reference isolates from laboratories across the UK and compared variation in simple laboratory phenotypes with genetic variation in sequenced genomes. Putatively identical isolates, identified previously to have aberrant phenotypes, varied by up to 281 SNPs (in 15 genes) compared to the most recent reference strain. Isolates also display considerable phenotype variation in motility, morphology, growth at 37 °C, invasion of chicken and human cell lines, and susceptibility to ampicillin. This study provides evidence of ongoing evolutionary change among C. jejuni isolates as they are cultured in different laboratories and highlights the need for careful consideration of genetic variation within laboratory reference strains. This article contains data hosted by Microreact.


Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism.

  • Jason Brunt‎ et al.
  • Toxins‎
  • 2020‎

Clostridium botulinum Group I and Clostridium sporogenes are closely related bacteria responsible for foodborne, infant and wound botulism. A comparative genomic study with 556 highly diverse strains of C. botulinum Group I and C. sporogenes (including 417 newly sequenced strains) has been carried out to characterise the genetic diversity and spread of these bacteria and their neurotoxin genes. Core genome single-nucleotide polymorphism (SNP) analysis revealed two major lineages; C. botulinum Group I (most strains possessed botulinum neurotoxin gene(s) of types A, B and/or F) and C. sporogenes (some strains possessed a type B botulinum neurotoxin gene). Both lineages contained strains responsible for foodborne, infant and wound botulism. A new C. sporogenes cluster was identified that included five strains with a gene encoding botulinum neurotoxin sub-type B1. There was significant evidence of horizontal transfer of botulinum neurotoxin genes between distantly related bacteria. Population structure/diversity have been characterised, and novel associations discovered between whole genome lineage, botulinum neurotoxin sub-type variant, epidemiological links to foodborne, infant and wound botulism, and geographic origin. The impact of genomic and physiological variability on the botulism risk has been assessed. The genome sequences are a valuable resource for future research (e.g., pathogen biology, evolution of C. botulinum and its neurotoxin genes, improved pathogen detection and discrimination), and support enhanced risk assessments and the prevention of botulism.


Antimicrobial resistance and interspecies gene transfer in Campylobacter coli and Campylobacter jejuni isolated from food animals, poultry processing, and retail meat in North Carolina, 2018-2019.

  • Dawn M Hull‎ et al.
  • PloS one‎
  • 2021‎

The Center for Disease Control and Prevention identifies antimicrobial resistant (AMR) Campylobacter as a serious threat to U.S. public health due to high community burden, increased transmissibility, and limited treatability. The National Antimicrobial Resistance Monitoring System (NARMS) plays an important role in surveillance of AMR bacterial pathogens in humans, food animals and retail meats. This study investigated C. coli and C. jejuni from live food animals, poultry carcasses at production, and retail meat in North Carolina between January 2018-December 2019. Whole genome sequencing and bioinformatics were used for phenotypic and genotypic characterization to compare AMR profiles, virulence factors associated with Guillain-Barré Syndrome (GBS) (neuABC and cst-II or cst-III), and phylogenic linkage between 541 Campylobacter isolates (C. coli n = 343, C. jejuni n = 198). Overall, 90.4% (489/541) Campylobacter isolates tested positive for AMR genes, while 43% (233/541) carried resistance genes for three or more antibiotic classes and were classified molecularly multidrug resistant. AMR gene frequencies were highest against tetracyclines (64.3%), beta-lactams (63.6%), aminoglycosides (38.6%), macrolides (34.8%), quinolones (24.4%), lincosamides (13.5%), and streptothricins (5%). A total of 57.6% (114/198) C. jejuni carried GBS virulence factors, while three C. coli carried the C. jejuni-like lipooligosaccharide locus, neuABC and cst-II. Further evidence of C. coli and C. jejuni interspecies genomic exchange was observed in identical multilocus sequence typing, shared sequence type (ST) 7818 clonal complex 828, and identical species-indicator genes mapA, ceuE, and hipO. There was a significant increase in novel STs from 2018 to 2019 (2 in 2018 and 21 in 2019, p<0.002), illustrating variable Campylobacter genomes within food animal production. Introgression between C. coli and C. jejuni may aid pathogen adaption, lead to higher AMR and increase Campylobacter persistence in food processing. Future studies should further characterize interspecies gene transfer and evolutionary trends in food animal production to track evolving risks to public health.


Signal balancing by the CetABC and CetZ chemoreceptors controls energy taxis in Campylobacter jejuni.

  • Mark Reuter‎ et al.
  • PloS one‎
  • 2013‎

The coupling of environmental sensing to flagella-mediated directed motility allows bacteria to move to optimum environments for growth and survival, either by sensing external stimuli (chemotaxis) or monitoring internal metabolic status (energy taxis). Sensing is mediated by transducer-like proteins (Tlp), either located in the membrane or in the cytoplasm, which commonly influence motility via the CheA-CheY chemotaxis pathway. In this study we have investigated the role of PAS-domain-containing intracellular Tlp-sensors in energy taxis of the food-borne pathogen Campylobacter jejuni, using plate- and tube-based assays utilising the conversion of the redox indicator dyes triphenyl tetrazolium chloride (TTC) and resazurin. Inactivation of the genes encoding the Campylobacter Energy Taxis system (CetA (Tlp9) and CetB (Aer2)) in C. jejuni strain NCTC 11168 resulted in reduced taxis. Inactivation of the cj1191c gene, encoding the CetB homolog CetC (Aer1), did not affect taxis per se, but the cetC gene complemented a cetB mutant in trans, indicating that CetC can form a functional signal transduction complex with CetA in the absence of CetB. Inactivation of both CetB and CetC resulted in greatly reduced taxis confirming the role of CetC in energy taxis. Inactivation of the cj1110c gene, encoding Tlp8 (CetZ), a cytoplasmic sensor with two PAS-domains, resulted in increased taxis, a phenotype opposite to that of CetAB. Inactivation of the cheA gene resulted in the same overall phenotype as the cetAB mutant in both wild-type and cetZ backgrounds, suggesting that both systems use the CheA system for signal transduction. Absence of both CetAB and CetZ resulted in the cetAB taxis phenotype, suggesting that CetZ is subordinate to CetAB. In conclusion, we present evidence that C. jejuni balances the input from two counteracting PAS-domain-containing sensory systems to position itself for optimal usage of energy resources.


In vivo and in silico determination of essential genes of Campylobacter jejuni.

  • Aline Metris‎ et al.
  • BMC genomics‎
  • 2011‎

In the United Kingdom, the thermophilic Campylobacter species C. jejuni and C. coli are the most frequent causes of food-borne gastroenteritis in humans. While campylobacteriosis is usually a relatively mild infection, it has a significant public health and economic impact, and possible complications include reactive arthritis and the autoimmune diseases Guillain-Barré syndrome. The rapid developments in "omics" technologies have resulted in the availability of diverse datasets allowing predictions of metabolism and physiology of pathogenic micro-organisms. When combined, these datasets may allow for the identification of potential weaknesses that can be used for development of new antimicrobials to reduce or eliminate C. jejuni and C. coli from the food chain.


Metal-responsive gene regulation and metal transport in Helicobacter species.

  • Clara Belzer‎ et al.
  • Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine‎
  • 2007‎

Helicobacter species are among the most successful colonizers of the mammalian gastrointestinal and hepatobiliary tract. Colonization is usually lifelong, indicating that Helicobacter species have evolved intricate mechanisms of dealing with stresses encountered during colonization of host tissues, like restriction of essential metal ions. The recent availability of genome sequences of the human gastric pathogen Helicobacter pylori, the murine enterohepatic pathogen Helicobacter hepaticus and the unannotated genome sequence of the ferret gastric pathogen Helicobacter mustelae has allowed for comparative genome analyses. In this review we present such analyses for metal transporters, metal-storage and metal-responsive regulators in these three Helicobacter species, and discuss possible contributions of the differences in metal metabolism in adaptation to the gastric or enterohepatic niches occupied by Helicobacter species.


Campylobacter jejuni and Campylobacter coli autotransporter genes exhibit lineage-associated distribution and decay.

  • Jai W Mehat‎ et al.
  • BMC genomics‎
  • 2020‎

Campylobacter jejuni and Campylobacter coli are major global causes of bacterial gastroenteritis. Whilst several individual colonisation and virulence factors have been identified, our understanding of their role in the transmission, pathogenesis and ecology of Campylobacter has been hampered by the genotypic and phenotypic diversity within C. jejuni and C. coli. Autotransporter proteins are a family of outer membrane or secreted proteins in Gram-negative bacteria such as Campylobacter, which are associated with virulence functions. In this study we have examined the distribution and predicted functionality of the previously described capC and the newly identified, related capD autotransporter gene families in Campylobacter.


Genomic characterization of enteropathogenic Escherichia coli (EPEC) of avian origin and rabbit ileal loop response; a pet macaw (Ara chloropterus) as a possible zoonotic reservoir.

  • André Becker Simões Saidenberg‎ et al.
  • The veterinary quarterly‎
  • 2020‎

Enteropathogenic Escherichia coli (EPEC) constitutes one of the main causes of mortality in children in low- to medium-income countries. Diverse animal species have been linked as reservoirs, including birds. The aim of this study was to describe the genomic and phylogenetic features of an EPEC recovered from a pet macaw and further characterizing the macro and microscopic lesion in a rabbit ileal loop experimental model. The isolate was whole-genome sequenced (WGS) obtaining its genotypic and phenotypic in silico characteristics and inoculated in a rabbit experimental model with subsequently evaluating the strain's pathogenicity by scanning electron microscopy (SEM) and histopathology. The isolate was characterized as O109:H21-B1-ST40 typical EPEC, harboring several virulence factors of diarrheagenic E. coli. The macaw EPEC genome was located in a monophyletic clade of human and animal ST40 EPEC sequences. In vivo inoculation demonstrated severe hemorrhage with SEM and histopathological analysis confirming these lesions to be associated with intra-epithelial lymphocytes. Therefore, the isolate not only shared several genotypic and phylogenetic similarities with EPEC that affects humans and animals, but was able to induce severe tissue injury in a mammal model. These findings highlight the underrated role of pet birds as zoonotic reservoirs and the diversity in virulence factors being unraveled by new WGS studies.


Portable Differential Detection of CTX-M ESBL Gene Variants, blaCTX-M-1 and blaCTX-M-15, from Escherichia coli Isolates and Animal Fecal Samples Using Loop-Primer Endonuclease Cleavage Loop-Mediated Isothermal Amplification.

  • Owen Higgins‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Cefotaximase-Munich (CTX-M) extended-spectrum beta-lactamase (ESBL) enzymes produced by Enterobacteriaceae confer resistance to clinically relevant third-generation cephalosporins. CTX-M group 1 variants, CTX-M-1 and CTX-M-15, are the leading ESBL-producing Enterobacteriaceae associated with animal and human infection, respectively, and are an increasing antimicrobial resistance (AMR) global health concern. The blaCTX-M-1 and blaCTX-M-15 genes encoding these variants have an approximate nucleotide sequence similarity of 98.7%, making effective differential diagnostic monitoring difficult. Loop-primer endonuclease cleavage loop-mediated isothermal amplification (LEC-LAMP) enables rapid real-time multiplex pathogen detection with single-base specificity and portable on-site testing. We have developed an internally controlled multiplex CTX-M-1/15 LEC-LAMP assay for the differential detection of blaCTX-M-1 and blaCTX-M-15. Assay analytical specificity was established using a panel of human, animal, and environmental Escherichia coli isolates positive for blaCTX-M-1 (n = 18), blaCTX-M-15 (n = 35), and other closely related blaCTX-Ms (n = 38) from Ireland, Germany, and Portugal, with analytical sensitivity determined using probit regression analysis. Animal fecal sample testing using the CTX-M-1/15 LEC-LAMP assay in combination with a rapid DNA extraction protocol was carried out on porcine fecal samples previously confirmed to be PCR-positive for E. coli blaCTX-M. Portable instrumentation was used to further analyze each fecal sample and demonstrate the on-site testing capabilities of the LEC-LAMP assay with the rapid DNA extraction protocol. The CTX-M-1/15 LEC-LAMP assay demonstrated complete analytical specificity for the differential detection of both variants with sensitive low-level detection of 8.5 and 9.8 copies per reaction for blaCTX-M-1 and blaCTX-M-15, respectively, and E. coli blaCTX-M-1 was identified in all blaCTX-M positive porcine fecal samples tested. IMPORTANCE CTX-M ESBL-producing E. coli is an increasing AMR public health issue with the transmission between animals and humans via zoonotic pathogens now a major area of interest. Accurate and timely identification of ESBL-expressing E. coli CTX-M variants is essential for disease monitoring, targeted antibiotic treatment and infection control. This study details the first report of portable diagnostics technology for the rapid differential detection of CTX-M AMR markers blaCTX-M-1 and blaCTX-M-15, facilitating improved identification and surveillance of these closely related variants. Further application of this portable internally controlled multiplex CTX-M-1/15 LEC-LAMP assay will provide new information on the transmission and prevalence of these CTX-M ESBL alleles. Furthermore, this transferable diagnostic technology can be applied to other new and emerging relevant AMR markers of interest providing more efficient and specific portable pathogen detection for improved epidemiological surveillance.


Genomic Screening of Antimicrobial Resistance Markers in UK and US Campylobacter Isolates Highlights Stability of Resistance over an 18-Year Period.

  • Arnoud H M van Vliet‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2022‎

Campylobacter jejuni and Campylobacter coli are important bacterial causes of human foodborne illness. Despite several years of reduced antibiotics usage in livestock production in the United Kingdom (UK) and United States (US), a high prevalence of antimicrobial resistance (AMR) persists in Campylobacter. Both countries have instigated genome sequencing-based surveillance programs for Campylobacter, and in this study, we have identified AMR genes in 32,256 C. jejuni and 8,776 C. coli publicly available genome sequences to compare the prevalence and trends of AMR in Campylobacter isolated in the UK and US between 2001 and 2018. AMR markers were detected in 68% of C. coli and 53% of C. jejuni isolates, with 15% of C. coli isolates being multidrug resistant (MDR), compared to only 2% of C. jejuni isolates. The prevalence of aminoglycoside, macrolide, quinolone, and tetracycline resistance remained fairly stable from 2001 to 2018 in both C. jejuni and C. coli, but statistically significant differences were observed between the UK and US. There was a statistically significant higher prevalence of aminoglycoside and tetracycline resistance for US C. coli and C. jejuni isolates and macrolide resistance for US C. coli isolates. In contrast, UK C. coli and C. jejuni isolates showed a significantly higher prevalence of quinolone resistance. Specific multilocus sequence type (MLST) clonal complexes (e.g., ST-353/464) showed >95% quinolone resistance. This large-scale comparison of AMR prevalence has shown that the prevalence of AMR remains stable for Campylobacter in the UK and the US. This suggests that antimicrobial stewardship and restricted antibiotic usage may help contain further expansion of AMR prevalence in Campylobacter but are unlikely to reduce it in the short term.


Bioinformatic Analysis of the Campylobacter jejuni Type VI Secretion System and Effector Prediction.

  • Luca Robinson‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

The Type VI Secretion System (T6SS) has important roles relating to bacterial antagonism, subversion of host cells, and niche colonisation. Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis worldwide and is a commensal coloniser of birds. Although recently discovered, the T6SS biological functions and identities of its effectors are still poorly defined in C. jejuni. Here, we perform a comprehensive bioinformatic analysis of the C. jejuni T6SS by investigating the prevalence and genetic architecture of the T6SS in 513 publicly available genomes using C. jejuni 488 strain as reference. A unique and conserved T6SS cluster associated with the Campylobacter jejuni Integrated Element 3 (CJIE3) was identified in the genomes of 117 strains. Analyses of the T6SS-positive 488 strain against the T6SS-negative C. jejuni RM1221 strain and the T6SS-positive plasmid pCJDM202 carried by C. jejuni WP2-202 strain defined the "T6SS-containing CJIE3" as a pathogenicity island, thus renamed as Campylobacter jejuni Pathogenicity Island-1 (CJPI-1). Analysis of CJPI-1 revealed two canonical VgrG homologues, CJ488_0978 and CJ488_0998, harbouring distinct C-termini in a genetically variable region downstream of the T6SS operon. CJPI-1 was also found to carry a putative DinJ-YafQ Type II toxin-antitoxin (TA) module, conserved across pCJDM202 and the genomic island CJIE3, as well as several open reading frames functionally predicted to encode for nucleases, lipases, and peptidoglycan hydrolases. This comprehensive in silico study provides a framework for experimental characterisation of T6SS-related effectors and TA modules in C. jejuni.


Refined analysis of the Campylobacter jejuni iron-dependent/independent Fur- and PerR-transcriptomes.

  • James Butcher‎ et al.
  • BMC genomics‎
  • 2015‎

The genome of Campylobacter jejuni contains two iron activated Fur-family transcriptional regulators, CjFur and CjPerR, which are primarily responsible for regulating iron homeostasis and oxidative stress respectively. Both transcriptional regulators have been previously implicated in regulating diverse functions beyond their primary roles in C. jejuni. To further characterize their regulatory networks, RNA-seq was used to define the transcriptional profiles of C. jejuni NCTC11168 wild type, Δfur, ΔperR and ΔfurΔperR isogenic deletion mutants under both iron-replete and iron-limited conditions.


Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria.

  • Ida Porcelli‎ et al.
  • BMC genomics‎
  • 2013‎

Gene reshuffling, point mutations and horizontal gene transfer contribute to bacterial genome variation, but require the genome to rewire its transcriptional circuitry to ensure that inserted, mutated or reshuffled genes are transcribed at appropriate levels. The genomes of Epsilonproteobacteria display very low synteny, due to high levels of reshuffling and reorganisation of gene order, but still share a significant number of gene orthologs allowing comparison. Here we present the primary transcriptome of the pathogenic Epsilonproteobacterium Campylobacter jejuni, and have used this for comparative and predictive transcriptomics in the Epsilonproteobacteria.


Conservation of σ28-Dependent Non-Coding RNA Paralogs and Predicted σ54-Dependent Targets in Thermophilic Campylobacter Species.

  • My Thanh Le‎ et al.
  • PloS one‎
  • 2015‎

Assembly of flagella requires strict hierarchical and temporal control via flagellar sigma and anti-sigma factors, regulatory proteins and the assembly complex itself, but to date non-coding RNAs (ncRNAs) have not been described to regulate genes directly involved in flagellar assembly. In this study we have investigated the possible role of two ncRNA paralogs (CjNC1, CjNC4) in flagellar assembly and gene regulation of the diarrhoeal pathogen Campylobacter jejuni. CjNC1 and CjNC4 are 37/44 nt identical and predicted to target the 5' untranslated region (5' UTR) of genes transcribed from the flagellar sigma factor σ54. Orthologs of the σ54-dependent 5' UTRs and ncRNAs are present in the genomes of other thermophilic Campylobacter species, and transcription of CjNC1 and CNC4 is dependent on the flagellar sigma factor σ28. Surprisingly, inactivation and overexpression of CjNC1 and CjNC4 did not affect growth, motility or flagella-associated phenotypes such as autoagglutination. However, CjNC1 and CjNC4 were able to mediate sequence-dependent, but Hfq-independent, partial repression of fluorescence of predicted target 5' UTRs in an Escherichia coli-based GFP reporter gene system. This hints towards a subtle role for the CjNC1 and CjNC4 ncRNAs in post-transcriptional gene regulation in thermophilic Campylobacter species, and suggests that the currently used phenotypic methodologies are insufficiently sensitive to detect such subtle phenotypes. The lack of a role of Hfq in the E. coli GFP-based system indicates that the CjNC1 and CjNC4 ncRNAs may mediate post-transcriptional gene regulation in ways that do not conform to the paradigms obtained from the Enterobacteriaceae.


The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance.

  • Ozan Gundogdu‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.


Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources.

  • Suchawan Pornsukarom‎ et al.
  • BMC genomics‎
  • 2018‎

Salmonella enterica is a significant foodborne pathogen, which can be transmitted via several distinct routes, and reports on acquisition of antimicrobial resistance (AMR) are increasing. To better understand the association between human Salmonella clinical isolates and the potential environmental/animal reservoirs, whole genome sequencing (WGS) was used to investigate the epidemiology and AMR patterns within Salmonella isolates from two adjacent US states.


Investigating the Association Between the Caecal Microbiomes of Broilers and Campylobacter Burden.

  • Ioannis Sakaridis‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

One of the major transmission routes for the foodborne bacterial pathogen Campylobacter is undercooked poultry meat, contaminated from intestinal contents during processing. In broilers, Campylobacter can grow to very high densities in the caeca, and is often considered to be a commensal or an opportunistic pathogen in poultry. Reduction of caecal loads of Campylobacter may assist in lowering incidence rates of Campylobacter food poisoning. To achieve this, there needs to be a better understanding of the dynamics of Campylobacter colonization in its natural niche, and the effect of the local microbiome on colonization. Previous studies have shown that the microbiome differed between Campylobacter colonized and non-colonized chicken intestinal samples. To characterize the microbiome of Campylobacter-colonized broilers, caecal samples of 100 randomly selected birds from four farms were analyzed using amplified 16S rRNA gene sequences. Bacterial taxonomic analysis indicated that inter-farm variation was greater than intra-farm variation. The two most common bacterial groups were Bacteroidetes and Firmicutes which were present in all samples and constituted 29.7-63.5 and 30.2-59.8% of the bacteria present, respectively. Campylobacter was cultured from all samples, ranging from 2 to 9 log10 CFU g-1. There was no clear link between Campylobacter counts and Firmicutes, Bacteroidetes, or Tenericutes levels in the 16S rRNA operational taxonomic unit (OTU)-based analysis of the caecal microbiome, but samples with high Campylobacter counts (>9 log CFU g-1) contained increased levels of Enterobacteriaceae. A decrease in Lactobacillus abundance in chicken caeca was also associated with high Campylobacter loads. The reported associations with Lactobacillus and Enterobacteriaceae match changes in the intestinal microbiome of chickens and mice previously reported for Campylobacter infection, and raises the question about temporality and causation; as to whether increases in Campylobacter loads create conditions adverse to Lactobacilli and/or beneficial to Enterobacteriaceae, or that changes in Lactobacilli and Enterobacteriaceae levels created conditions beneficial for Campylobacter colonization. If these changes can be controlled, this may open opportunities for modulation of chicken microbiota to reduce Campylobacter levels for improved food safety.


In silico design of a polypeptide as a vaccine candidate against ascariasis.

  • Francisco M D Evangelista‎ et al.
  • Scientific reports‎
  • 2023‎

Ascariasis is the most prevalent zoonotic helminthic disease worldwide, and is responsible for nutritional deficiencies, particularly hindering the physical and neurological development of children. The appearance of anthelmintic resistance in Ascaris is a risk for the target of eliminating ascariasis as a public health problem by 2030 set by the World Health Organisation. The development of a vaccine could be key to achieving this target. Here we have applied an in silico approach to design a multi-epitope polypeptide that contains T-cell and B-cell epitopes of reported novel potential vaccination targets, alongside epitopes from established vaccination candidates. An artificial toll-like receptor-4 (TLR4) adjuvant (RS09) was added to improve immunogenicity. The constructed peptide was found to be non-allergic, non-toxic, with adequate antigenic and physicochemical characteristics, such as solubility and potential expression in Escherichia coli. A tertiary structure of the polypeptide was used to predict the presence of discontinuous B-cell epitopes and to confirm the molecular binding stability with TLR2 and TLR4 molecules. Immune simulations predicted an increase in B-cell and T-cell immune response after injection. This polypeptide can now be validated experimentally and compared to other vaccine candidates to assess its possible impact in human health.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: