Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 82 papers

Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization.

  • Jan Fiedler‎ et al.
  • Journal of the American College of Cardiology‎
  • 2015‎

Long noncoding ribonucleic acids (lncRNAs) are a subclass of regulatory noncoding ribonucleic acids for which expression and function in human endothelial cells and angiogenic processes is not well studied.


Exogenous Nitric Oxide Protects Human Embryonic Stem Cell-Derived Cardiomyocytes against Ischemia/Reperfusion Injury.

  • János Pálóczi‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2016‎

Background and Aims. Human embryonic stem cell- (hESC-) derived cardiomyocytes are one of the useful screening platforms of potential cardiocytoprotective molecules. However, little is known about the behavior of these cardiomyocytes in simulated ischemia/reperfusion conditions. In this study, we have tested the cytoprotective effect of an NO donor and the brain type natriuretic peptide (BNP) in a screening platform based first on differentiated embryonic bodies (EBs, 6 + 4 days) and then on more differentiated cardiomyocytes (6 + 24 days), both derived from hESCs. Methods. Both types of hESC-derived cells were exposed to 150 min simulated ischemia, followed by 120 min reperfusion. Cell viability was assessed by propidium iodide staining. The following treatments were applied during simulated ischemia in differentiated EBs: the NO-donor S-nitroso-N-acetylpenicillamine (SNAP) (10(-7), 10(-6), and 10(-5) M), BNP (10(-9), 10(-8), and 10(-7) M), and the nonspecific NO synthase inhibitor Nω-nitro-L-arginine (L-NNA, 10(-5) M). Results. SNAP (10(-6), 10(-5) M) significantly attenuated cell death in differentiated EBs. However, simulated ischemia/reperfusion-induced cell death was not affected by BNP or by L-NNA. In separate experiments, SNAP (10(-6) M) also protected hESC-derived cardiomyocytes. Conclusions. We conclude that SNAP, but not BNP, protects differentiated EBs or cardiomyocytes derived from hESCs against simulated ischemia/reperfusion injury. The present screening platform is a useful tool for discovery of cardiocytoprotective molecules and their cellular mechanisms.


Analysis of fibrosis in control or pressure overloaded rat hearts after mechanical unloading by heterotopic heart transplantation.

  • Andreas Schaefer‎ et al.
  • Scientific reports‎
  • 2019‎

Mechanical unloading (MU) by implantation of left ventricular assist devices (LVAD) has become clinical routine. This procedure has been shown to reverse cardiac pathological remodeling, with the underlying molecular mechanisms incompletely understood. Most studies thus far were performed in non-standardized human specimens or MU of healthy animal hearts. Our study investigates cardiac remodeling processes in sham-operated healthy rat hearts and in hearts subjected to standardized pathological pressure overload by transverse aortic constriction (TAC) prior to MU by heterotopic heart transplantation (hHTx/MU). Rats underwent sham or TAC surgery. Disease progression was monitored by echocardiography prior to MU by hHTx/MU. Hearts after TAC or TAC combined with hHTx/MU were removed and analyzed by histology, western immunoblot and gene expression analysis. TAC surgery resulted in cardiac hypertrophy and impaired cardiac function. TAC hearts revealed significantly increased cardiac myocyte diameter and mild fibrosis. Expression of hypertrophy associated genes after TAC was higher compared to hearts after hHTx/MU. While cardiac myocyte cell diameter regressed to the level of sham-operated controls in all hearts subjected to hHTx/MU, fibrotic remodeling was significantly exacerbated. Transcription of pro-fibrotic and apoptosis-related genes was markedly augmented in all hearts after hHTx/MU. Sarcomeric proteins involved in excitation-contraction coupling displayed significantly lower phosphorylation levels after TAC and significantly reduced total protein levels after hHTx/MU. Development of myocardial fibrosis, cardiac myocyte atrophy and loss of sarcomeric proteins was observed in all hearts that underwent hHTX/MU regardless of the disease state. These results may help to explain the clinical experience with low rates of LVAD removal due to lack of myocardial recovery.


Clonal dynamics studied in cultured induced pluripotent stem cells reveal major growth imbalances within a few weeks.

  • David Brenière-Letuffe‎ et al.
  • Stem cell research & therapy‎
  • 2018‎

Human induced pluripotent stem (iPS) cells have revolutionised research and spark hopes for future tissue replacement therapies. To obtain high cell numbers, iPS cells can be expanded indefinitely. However, as long-term expansion can compromise cell integrity and quality, we set out to assess potential reduction of clonal diversity by inherent growth imbalances.


Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation.

  • Daniel Biermann‎ et al.
  • PloS one‎
  • 2016‎

The long-term outcome of patients with single ventricles improved over time, but remains poor compared to other congenital heart lesions with biventricular circulation. Main cause for this unfavourable outcome is the unphysiological hemodynamic of the Fontan circulation, such as subnormal systemic cardiac output and increased systemic-venous pressure. To overcome this limitation, we are developing the concept of a contractile extracardiac Fontan-tunnel. In this study, we evaluated the survival and structural development of a tissue-engineered conduit under in vivo conditions. Engineered heart tissue was generated from ventricular heart cells of neonatal Wistar rats, fibrinogen and thrombin. Engineered heart tissues started beating around day 8 in vitro and remained contractile in vivo throughout the experiment. After culture for 14 days constructs were implanted around the right superior vena cava of Wistar rats (n = 12). Animals were euthanized after 7, 14, 28 and 56 days postoperatively. Hematoxylin and eosin staining showed cardiomyocytes arranged in thick bundles within the engineered heart tissue-conduit. Immunostaining of sarcomeric actin, alpha-actin and connexin 43 revealed a well -developed cardiac myocyte structure. Magnetic resonance imaging (d14, n = 3) revealed no constriction or stenosis of the superior vena cava by the constructs. Engineered heart tissues survive and contract for extended periods after implantation around the superior vena cava of rats. Generation of larger constructs is warranted to evaluate functional benefits of a contractile Fontan-conduit.


Pharmacological inhibition of DNA methylation attenuates pressure overload-induced cardiac hypertrophy in rats.

  • Justus Stenzig‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2018‎

Heart failure is associated with altered gene expression and DNA methylation. De novo DNA methylation is associated with gene silencing, but its role in cardiac pathology remains incompletely understood. We hypothesized that inhibition of DNA methyltransferases (DNMT) might prevent the deregulation of gene expression and the deterioration of cardiac function under pressure overload (PO). To test this hypothesis, we evaluated a DNMT inhibitor in PO in rats and analysed DNA methylation in cardiomyocytes.


Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation.

  • Marc N Hirt‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2014‎

Spontaneously beating engineered heart tissue (EHT) represents an advanced in vitro model for drug testing and disease modeling, but cardiomyocytes in EHTs are less mature and generate lower forces than in the adult heart. We devised a novel pacing system integrated in a setup for videooptical recording of EHT contractile function over time and investigated whether sustained electrical field stimulation improved EHT properties. EHTs were generated from neonatal rat heart cells (rEHT, n=96) or human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hEHT, n=19). Pacing with biphasic pulses was initiated on day 4 of culture. REHT continuously paced for 16-18 days at 0.5Hz developed 2.2× higher forces than nonstimulated rEHT. This was reflected by higher cardiomyocyte density in the center of EHTs, increased connexin-43 abundance as investigated by two-photon microscopy and remarkably improved sarcomere ultrastructure including regular M-bands. Further signs of tissue maturation include a rightward shift (to more physiological values) of the Ca(2+)-response curve, increased force response to isoprenaline and decreased spontaneous beating activity. Human EHTs stimulated at 2Hz in the first week and 1.5Hz thereafter developed 1.5× higher forces than nonstimulated hEHT on day 14, an ameliorated muscular network of longitudinally oriented cardiomyocytes and a higher cytoplasm-to-nucleus ratio. Taken together, continuous pacing improved structural and functional properties of rEHTs and hEHTs to an unprecedented level. Electrical stimulation appears to be an important step toward the generation of fully mature EHT.


Thymosin β4 Improves Differentiation and Vascularization of EHTs.

  • Tilman Ziegler‎ et al.
  • Stem cells international‎
  • 2017‎

Induced pluripotent stem cells (iPSC) constitute a powerful tool to study cardiac physiology and represents a promising treatment strategy to tackle cardiac disease. However, iPSCs remain relatively immature after differentiation. Additionally, engineered heart tissue (EHT) has been investigated as a therapy option in preclinical disease models with promising results, although their vascularization and functionality leave room for improvement. Thymosin β4 (Tβ4) has been shown to promote the differentiation of progenitor cell lines to cardiomyocytes while it also induces angiogenic sprouting and vascular maturation. We examined the potential impact of Tβ4 to enhance maturation of cardiomyocytes from iPSCs. Assessing the expression of transcription factors associated with cardiac differentiation, we were able to demonstrate the increased generation of cells displaying cardiomyocyte characteristics in vitro. Furthermore, we demonstrated, in a zebrafish model of embryonic vascular development, that Tβ4 is crucial for the proper execution of lymphatic and angiogenic vessel sprouting. Finally, utilizing Tβ4-transduced EHTs generated from mice genetically engineered to label endothelial cells in vitro, we show that treatment with Tβ4 promotes vascularization and contractility in EHTs, highlighting Tβ4 as a growth factor improving the formation of cardiomyocytes from iPSC and enhancing the performance of EHTs generated from neonatal cardiomyocytes.


Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling and arrhythmias in the heart evoked by β-adrenergic stimulation.

  • Merle Nebel‎ et al.
  • The Journal of biological chemistry‎
  • 2013‎

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca(2+)-releasing second messenger known to date. Here, we report a new role for NAADP in arrhythmogenic Ca(2+) release in cardiac myocytes evoked by β-adrenergic stimulation. Infusion of NAADP into intact cardiac myocytes induced global Ca(2+) signals sensitive to inhibitors of both acidic Ca(2+) stores and ryanodine receptors and to NAADP antagonist BZ194. Furthermore, in electrically paced cardiac myocytes BZ194 blocked spontaneous diastolic Ca(2+) transients caused by high concentrations of the β-adrenergic agonist isoproterenol. Ca(2+) transients were recorded both as increases of the free cytosolic Ca(2+) concentration and as decreases of the sarcoplasmic luminal Ca(2+) concentration. Importantly, NAADP antagonist BZ194 largely ameliorated isoproterenol-induced arrhythmias in awake mice. We provide strong evidence that NAADP-mediated modulation of couplon activity plays a role for triggering spontaneous diastolic Ca(2+) transients in isolated cardiac myocytes and arrhythmias in the intact animal. Thus, NAADP signaling appears an attractive novel target for antiarrhythmic therapy.


Role of the spleen in peripheral memory B-cell homeostasis in patients with autoimmune thrombocytopenia purpura.

  • Lorena Martinez-Gamboa‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2009‎

The effect of splenectomy on circulating memory B cells in autoimmune thrombocytopenia purpura (AITP) patients has not yet been addressed. We therefore analyzed the distribution and phenotypic characteristics of B-cell subsets in non-splenectomized and splenectomized AITP patients and controls, as well as CD95 expression after B cell activation. Decreased frequencies of memory B cells in splenectomized individuals were observed, with a rapid decline of CD27+IgD+ and a slower decrease of CD27+IgD- and CD27-/IgD- cells. Similar results were noted following splenectomy in healthy donors (HD). CD95+ B cells were substantially increased in all subsets in patients with active AITP, indicating their enhanced activation status. After splenectomy, the percentage of CD95+ B cells were further increased in the CD27+IgD- post-switch memory population in AITP, but not in HD. CD95+CD27+ memory B cells largely reside in the region in the human spleen analogous to the murine marginal zone. Thus, the spleen plays a fundamental role in controlling peripheral memory B cell homeostasis in both AITP and HD and regulates activated CD95+ B cells in patients with AITP.


An Important Role for DNMT3A-Mediated DNA Methylation in Cardiomyocyte Metabolism and Contractility.

  • Alexandra Madsen‎ et al.
  • Circulation‎
  • 2020‎

DNA methylation acts as a mechanism of gene transcription regulation. It has recently gained attention as a possible therapeutic target in cardiac hypertrophy and heart failure. However, its exact role in cardiomyocytes remains controversial. Thus, we knocked out the main de novo DNA methyltransferase in cardiomyocytes, DNMT3A, in human induced pluripotent stem cells. Functional consequences of DNA methylation-deficiency under control and stress conditions were then assessed in human engineered heart tissue from knockout human induced pluripotent stem cell-derived cardiomyocytes.


Regulation of ICa,L and force by PDEs in human-induced pluripotent stem cell-derived cardiomyocytes.

  • Umber Saleem‎ et al.
  • British journal of pharmacology‎
  • 2020‎

Phosphodiesterases (PDEs) are important regulators of β-adrenoceptor signalling in the heart. While PDE4 is the most important isoform that regulates ICa,L and force in rodent cardiomyocytes, the dominant isoform in adult human cardiomyocytes is PDE3.


Incomplete Assembly of the Dystrophin-Associated Protein Complex in 2D and 3D-Cultured Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

  • Guillaume Gilbert‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM) are increasingly used to study genetic diseases on a human background. However, the lack of a fully mature adult cardiomyocyte phenotype of hiPSC-CM may be limiting the scope of these studies. Muscular dystrophies and concomitant cardiomyopathies result from mutations in genes encoding proteins of the dystrophin-associated protein complex (DAPC), which is a multi-protein membrane-spanning complex. We examined the expression of DAPC components in hiPSC-CM, which underwent maturation in 2D and 3D culture protocols. The results were compared with human adult cardiac tissue and isolated cardiomyocytes. We found that similarly to adult cardiomyocytes, hiPSC-CM express dystrophin, in line with previous studies on Duchenne's disease. β-dystroglycan was also expressed, but, contrary to findings in adult cardiomyocytes, none of the sarcoglycans nor α-dystroglycan were, despite the presence of their mRNA. In conclusion, despite the robust expression of dystrophin, the absence of several other DAPC protein components cautions for reliance on commonly used protocols for hiPSC-CM maturation for functional assessment of the complete DAPC.


Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction.

  • D Julia Trembinski‎ et al.
  • Nature communications‎
  • 2020‎

Long non-coding RNAs (lncRNAs) contribute to cardiac (patho)physiology. Aging is the major risk factor for cardiovascular disease with cardiomyocyte apoptosis as one underlying cause. Here, we report the identification of the aging-regulated lncRNA Sarrah (ENSMUST00000140003) that is anti-apoptotic in cardiomyocytes. Importantly, loss of SARRAH (OXCT1-AS1) in human engineered heart tissue results in impaired contractile force development. SARRAH directly binds to the promoters of genes downregulated after SARRAH silencing via RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix forming domain of Sarrah show an increase in apoptosis. One of the direct SARRAH targets is NRF2, and restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. Overexpression of Sarrah in mice shows better recovery of cardiac contractile function after AMI compared to control mice. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a regulator of cardiomyocyte survival.


FYCO1 Regulates Cardiomyocyte Autophagy and Prevents Heart Failure Due to Pressure Overload In Vivo.

  • Christian Kuhn‎ et al.
  • JACC. Basic to translational science‎
  • 2021‎

Autophagy is a cellular degradation process that has been implicated in diverse disease processes. The authors provide evidence that FYCO1, a component of the autophagic machinery, is essential for adaptation to cardiac stress. Although the absence of FYCO1 does not affect basal autophagy in isolated cardiomyocytes, it abolishes induction of autophagy after glucose deprivation. Likewise, Fyco1-deficient mice subjected to starvation or pressure overload are unable to respond with induction of autophagy and develop impaired cardiac function. FYCO1 overexpression leads to induction of autophagy in isolated cardiomyocytes and transgenic mouse hearts, thereby rescuing cardiac dysfunction in response to biomechanical stress.


Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation.

  • Friederike Cuello‎ et al.
  • EMBO molecular medicine‎
  • 2021‎

The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.


In vivo grafting of large engineered heart tissue patches for cardiac repair.

  • Richard J Jabbour‎ et al.
  • JCI insight‎
  • 2021‎

Engineered heart tissue (EHT) strategies, by combining cells within a hydrogel matrix, may be a novel therapy for heart failure. EHTs restore cardiac function in rodent injury models, but more data are needed in clinically relevant settings. Accordingly, an upscaled EHT patch (2.5 cm × 1.5 cm × 1.5 mm) consisting of up to 20 million human induced pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) embedded in a fibrin-based hydrogel was developed. A rabbit myocardial infarction model was then established to test for feasibility and efficacy. Our data showed that hPSC-CMs in EHTs became more aligned over 28 days and had improved contraction kinetics and faster calcium transients. Blinded echocardiographic analysis revealed a significant improvement in function in infarcted hearts that received EHTs, along with reduction in infarct scar size by 35%. Vascularization from the host to the patch was observed at week 1 and stable to week 4, but electrical coupling between patch and host heart was not observed. In vivo telemetry recordings and ex vivo arrhythmia provocation protocols showed that the patch was not pro-arrhythmic. In summary, EHTs improved function and reduced scar size without causing arrhythmia, which may be due to the lack of electrical coupling between patch and host heart.


An arrhythmogenic metabolite in atrial fibrillation.

  • Julia Krause‎ et al.
  • Journal of translational medicine‎
  • 2023‎

Long-chain acyl-carnitines (ACs) are potential arrhythmogenic metabolites. Their role in atrial fibrillation (AF) remains incompletely understood. Using a systems medicine approach, we assessed the contribution of C18:1AC to AF by analysing its in vitro effects on cardiac electrophysiology and metabolism, and translated our findings into the human setting.


Blockade of miR-140-3p prevents functional deterioration in afterload-enhanced engineered heart tissue.

  • Tessa R Werner‎ et al.
  • Scientific reports‎
  • 2019‎

Afterload enhancement (AE) of rat engineered heart tissue (EHT) in vitro leads to a multitude of changes that in vivo are referred to as pathological cardiac hypertrophy: e.g., cardiomyocyte hypertrophy, contractile dysfunction, reactivation of fetal genes and fibrotic changes. Moreover AE induced the upregulation of 22 abundantly expressed microRNAs. Here, we aimed at evaluating the functional effect of inhibiting 7 promising microRNAs (miR-21-5p, miR-146b-5p, miR-31a-5p, miR-322-5p, miR-450a-5p, miR-140-3p and miR-132-3p) in a small-range screen. Singular transfection of locked nucleic acid (LNA)-based anti-miRs at 100 nM (before the one week AE-procedure) led to a powerful reduction of the targeted microRNAs. Pretreatment with anti-miR-146b-5p, anti-miR-322-5p or anti-miR-450a-5p did not alter the AE-induced contractile decline, while anti-miR-31a-5p-pretreatment even worsened it. Anti-miR-21-5p and anti-miR-132-3p partially attenuated the AE-effect, confirming previous reports. LNA-anti-miR against miR-140-3p, a microRNA recently identified as a prognostic biomarker of cardiovascular disease, also attenuated the AE-effect. To simplify future in vitro experiments and to create an inhibitor for in vivo applications, we designed shorter miR-140-3p-inhibitors and encountered variable efficiency. Only the inhibitor that effectively repressed miR-140-3p was also protective against the AE-induced contractile decline. In summary, in a small-range functional screen, miR-140-3p evolved as a possible new target for the attenuation of afterload-induced pathological cardiac hypertrophy.


Guanabenz interferes with ER stress and exerts protective effects in cardiac myocytes.

  • Christiane Neuber‎ et al.
  • PloS one‎
  • 2014‎

Endoplasmic reticulum (ER) stress has been implicated in a variety of cardiovascular diseases. During ER stress, disruption of the complex of protein phosphatase 1 regulatory subunit 15A and catalytic subunit of protein phosphatase 1 by the small molecule guanabenz (antihypertensive, α2-adrenoceptor agonist) and subsequent inhibition of stress-induced dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in prolonged eIF2α phosphorylation, inhibition of protein synthesis and protection from ER stress. In this study we assessed whether guanabenz protects against ER stress in cardiac myocytes and affects the function of 3 dimensional engineered heart tissue (EHT). We utilized neonatal rat cardiac myocytes for the assessment of cell viability and activation of ER stress-signalling pathways and EHT for functional analysis. (i) Tunicamycin induced ER stress as measured by increased mRNA and protein levels of glucose-regulated protein 78 kDa, P-eIF2α, activating transcription factor 4, C/EBP homologous protein, and cell death. (ii) Guanabenz had no measurable effect alone, but antagonized the effects of tunicamycin on ER stress markers. (iii) Tunicamycin and other known inducers of ER stress (hydrogen peroxide, doxorubicin, thapsigargin) induced cardiac myocyte death, and this was antagonized by guanabenz in a concentration- and time-dependent manner. (iv) ER stressors also induced acute or delayed contractile dysfunction in spontaneously beating EHTs and this was, with the notable exception of relaxation deficits under thapsigargin, not significantly affected by guanabenz. The data confirm that guanabenz interferes with ER stress-signalling and has protective effects on cell survival. Data show for the first time that this concept extends to cardiac myocytes. The modest protection in EHTs points to more complex mechanisms of force regulation in intact functional heart muscle.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: